313 resultados para Reducing sugar (Determination)
Resumo:
Modern lipidomics relies heavily on mass spectrometry for the structural characterization and quantification of lipids of biological origins. Structural information is gained by tandem mass spectrometry (MS/MS) whereby lipid ions are fragmented to elucidate lipid class, fatty acid chain length, and degree of unsaturation. Unfortunately, however, in most cases double bond position cannot be assigned based on MS/MS data alone and thus significant structural diversity is hidden from such analyses. For this reason, we have developed two online methods for determining double bond position within unsaturated lipids; ozone electrospray ionization mass spectrometry (OzESI-MS) and ozone-induced dissociation (OzID). Both techniques utilize ozone to cleave C-C double bonds that result in chemically induced fragment ions that locate the position(s) of unsaturation
Resumo:
Bagasse stockpile operations have the potential to lead to adverse environmental and social impacts. Dust releases can cause occupational health and safety concerns for factory workers and dust emissions impact on the surrounding community. Preliminary modelling showed that bagasse depithing would likely reduce the environmental risks, particularly dust emissions, associated with large-scale bagasse stockpiling operations. Dust emission properties were measured and used for dispersion modelling with favourable outcomes. Modelling showed a 70% reduction in peak ground level concentrations of PM10 dust (particles with an aerodynamic diameter less than 10 μm) from operations on depithed bagasse stockpiles compared to similar operations on stockpiles of whole bagasse. However, the costs of a depithing operation at a sugar factory were estimated to be approximately $2.1 million in capital expenditure to process 100 000 t/y of bagasse and operating costs were 200 000 p.a. The total capital cost for a 10 000 t/y operation was approximately $1.6 million. The cost of depithing based on a discounted cash flow analysis was $5.50 per tonne of bagasse for the 100 000 t/y scenario. This may make depithing prohibitively expensive in many situations if installed exclusively as a dust control measure.
Resumo:
Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.
An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane
Resumo:
Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.
Resumo:
This is the protocol for a review and there is no abstract. The objectives are as follows: To determine the evidence supporting the use of recruitment manoeuvres in mechanically ventilated neonates and identify the optimal method of lung recruitment. To determine the effects of lung recruitment manoeuvres in neonates receiving ventilatory support on neonatal mortality and development of chronic lung disease when compared to no recruitment. If data are available, subgroup analyses will include: chronological age, gestational age, lung pathophysiology and pre-existing lung disease, mode and length of ventilation, timing and frequency of recruitment techniques.
Resumo:
Introduction Environmental and biological samples taken around Da Nang Air Base have shown elevated levels of dioxin over many years [1-3]. A pre-intervention knowledge, attitudes and practices (KAP) survey (2009), a risk reduction program (2010) and a post intervention KAP survey (2011) were undertaken in four wards surrounding Danang Airbase. A follow-up evaluation was undertaken in 2013. Methods A KAP survey was implemented among 400 randomly selected food handlers. Eleven indepth interviews and four focus group discussions were also undertaken. Results The knowledge of respondents remained positive and/or improved at 2.5 years follow-up. There were no significant differences in attitudes toward preventing dioxin exposure across surveys; most respondents were positive in all three surveys. An increase in households (69.5%) undertaking measures to prevent exposure was observed, which was higher than in the pre-intervention survey (39.6%) and post- intervention survey (60.4%) (χ2 = 95.6; p < 0.001). The proportion of respondents practicing appropriate preventive measures was also significantly improved. Conclusions Despite most of the intervention program’s activities ceasing in 2010, the risk reduction program has resulted in positive outcomes over the longer-term, with many knowledge and attitude measures remaining stable or imporving. Some KAP indicators decreased, but these KAP indicators were still significantly higher than the pre-intervention levels.
Resumo:
Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of Distributed Generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. This paper addresses the issue of improving the network voltage profile in distribution systems by installing a DG of the most suitable size, at a suitable location. An analytical approach is developed based on algebraic equations for uniformly distributed loads to determine the optimal operation, size and location of the DG in order to achieve required levels of network voltage. The developed method is simple to use for conceptual design and analysis of distribution system expansion with a DG and suitable for a quick estimation of DG parameters (such as optimal operating angle, size and location of a DG system) in a radial network. A practical network is used to verify the proposed technique and test results are presented.
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (ζ) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (?) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
Business processes are an important instrument for understanding and improving how companies provide goods and services to customers. Therefore, many companies have documented their business processes well, often in the Event-driven Process Chains (EPC). Unfortunately, in many cases the resulting EPCs are rather complex, so that the overall process logic is hidden in low level process details. This paper proposes abstraction mechanisms for process models that aim to reduce their complexity, while keeping the overall process structure. We assume that functions are marked with efforts and splits are marked with probabilities. This information is used to separate important process parts from less important ones. Real world process models are used to validate the approach.
Resumo:
Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.
Resumo:
There is an increasing need for biodegradable, environmentally friendly plastics to replace the petroleum-based non-degradable plastics which litter and pollute the environment. Starch-based plastic film composites are becoming a popular alternative because of their low cost, biodegradability, the abundance of starch, and ease with which starch-based films can be chemically modified. This paper reports on the results of using sugar cane bagasse nanofibres to improve the physicochemical properties of starch-based polymers. The addition of bagasse nanofibre (2.5, 5, 10 or 20 wt%) to (modified) potato starch (‘Soluble starch’) reduced the moisture uptake by up to 17 % at 58 % relative humidity (RH). The film’s tensile strength and Young’s Modulus increased by up to 100 % and 200 % with 10 wt% and 20 wt% nanofibre respectively at 58% RH. The tensile strain reduced by up to 70 % at 20 wt% fibre loading. These results indicate that addition of sugar cane bagasse nanofibres significantly improved the properties of starch-based plastic films
Resumo:
Phospholipids are the key structural component of cell membranes, and recent advances in electrospray ionization mass spectrometry provide for the fast and efficient analysis of these compounds in biological extracts.1-3 The application of electrospray ionization tandem mass spectrometry (ESI-MS/MS) to phospholipid analysis has demonstrated several key advantages over the more traditional chromatographic methods, including speed and greater structural information.4 For example, the ESI-MS/MS spectrum of a typical phospholipidsparticularly in negative ion modesreadily identifies the carbon chain length and the degree of unsaturation of each of the fatty acids esterified to the parent molecule.5 A critical limitation of conventional ESI-MS/MS analysis, however, is the inability to uniquely identify the position of double bonds within the fatty acid chains. This is especially problematic given the importance of double bond position in determining the biological function of lipid classes.6 Previous attempts to identify double bond position in intact phospholipids using mass spectrometry employ either MS3 or offline chemical derivatization.7-11 The former method requires specialized instrumentation and is rarely applied, while the latter methods suffer from complications inherent in sample handling prior to analysis. In this communication we outline a novel on-line approach for the identification of double bond position in intact phospholipids. In our method, the double bond(s) present in unsaturated phospholipids are cleaved by ozonolysis within the ion source of a conventional ESI mass spectrometer to give two chemically induced fragment ions that may be used to unambiguously assign the position of the double bond. This is achieved by using oxygen as the electrospray nebulizing gas in combination with high electrospray voltages to initiate the formation of an ozoneproducing.
Resumo:
Does job control act as a stress-buffer when employees' type and level of work self-determination is taken into account? It was anticipated that job control would only be stress-buffering for employees high in self-determined and low in non-self-determined work motivation. In contrast, job control would be stress-exacerbating for employees who were low in self-determined and high in non-self-determined work motivation. Employees of a health insurance organization (N = 123) completed a survey on perceptions of role overload, job control, work self-determination, and a range of strain and engagement indicators. Results revealed that, when individuals high in self-determination perceived high job control, they experienced greater engagement (in the form of dedication to their work). In addition, when individuals high in non-self-determination perceived high job demands, they experienced more health complaints. A significant 3-way interaction demonstrated that, for individuals low in non-self-determination, high job control had the anticipated stress-buffering effect on engagement (in the form of absorption in their work). In addition, low job control was stress-exacerbating. However, contrary to expectations, for those high in non-self-determination, high job control was just as useful as low job control as a stress-buffer. The practical applications of these findings to the organizational context are discussed.
Resumo:
The objective of this experimental study is to capture the dynamic temporal processes that occur in changing work settings and to test how work control and individuals' motivational predispositions interact to predict reactions to these changes. To this aim, we examine the moderating effects of global self-determined and non-self-determined motivation, at different levels of work control, on participants' adaptation and stress reactivity to changes in workload during four trials of an inbox activity. Workload was increased or decreased at Trial 3, and adaptation to this change was examined via fluctuations in anxiety, coping, motivation, and performance. In support of the hypotheses, results revealed that, for non-self-determined individuals, low work control was stress-buffering and high work control was stress-exacerbating when predicting anxiety and intrinsic motivation. In contrast, for self-determined individuals, high work control facilitated the adaptive use of planning coping in response to a change in workload. Overall, this pattern of results demonstrates that, while high work control was anxiety-provoking and demotivating for non-self-determined individuals, self-determined individuals used high work control to implement an adaptive antecedent-focused emotion regulation strategy (i.e., planning coping) to meet situational demands. Other interactive effects of global motivation emerged on anxiety, active coping, and task performance. These results and their practical implications are discussed.