255 resultados para Rare gas
Resumo:
Thin film nanostructured gas sensors typically operate at temperatures above 400°C, but lower temperature operation is highly desirable, especially for remote area field sensing as this reduces significantly power consumption. We have investigated a range of sensor materials based on both pure and doped tungsten oxide (mainly focusing on Fe-doping), deposited using both thermal evaporation and electron-beam evaporation, and using a variety of post-deposition annealing. The films show excellent sensitivity at operating temperatures as low as 150°C for detection of NO2. There is a definite relationship between the sensitivity and the crystallinity and nanostructure obtained through the deposition and heat treatment processes, as well as variations in the conductivity caused both by doping and heat treatmetn. The ultimate goal of this work is to control the sensing properties, including selectivity to specific gases through the engineering of the electronic properties and the nanostructure of the films.
Resumo:
As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC
Resumo:
A straightforward procedure for the acid digestion of geological samples with SiO2 concentrations ranging between about 40 to 80%, is described. A powdered sample (200 mesh) of 500 mg was used and fused with 1000 mg spectroflux at about 1000 degreesC in a platinum crucible. The molten was subsequently digested in an aqueous solution of HNO3 at 100 degreesC. Several systematic digestion procedures were followed using various concentrations of HNO3. It was found that a relationship could be established between the dissolution-time and acid concentration. For an acid concentration of 15% an optimum dissolution-time of under 4 min was recorded. To verify that the dissolutions were complete, they were subjected to rigorous quality control tests. The turbidity and viscosity were examined at different intervals and the results were compared with that of deionised water. No significant change in either parameter was observed. The shelf-life of each solution lasted for several months, after which time polymeric silicic acid formed in some solutions, resulting in the presence of a gelatinous solid. The method is cost effective and is clearly well suited for routine applications on a small scale, especially in laboratories in developing countries. ICP-MS was applied to the determination of 13 Rare Earth Elements and Hf in a set of 107 archaeological samples subjected to the above digestion procedure. The distribution of these elements was examined and the possibility of using the REE's for provenance studies is discussed.
Resumo:
The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.
Resumo:
Few would disagree that the upstream oil & gas industry has become more technology-intensive over the years. But how does innovation happen in the industry? Specifically, what ideas and inputs flow from which parts of the sector׳s value network, and where do these inputs go? And how do firms and organizations from different countries contribute differently to this process? This paper puts forward the results of a survey designed to shed light on these questions. Carried out in collaboration with the Society of Petroleum Engineers (SPE), the survey was sent to 469 executives and senior managers who played a significant role with regard to R&D and/or technology deployment in their respective business units. A total of 199 responses were received from a broad range of organizations and countries around the world. Several interesting themes and trends emerge from the results, including: (1) service companies tend to file considerably more patents per innovation than other types of organization; (2) over 63% of the deployed innovations reported in the survey originated in service companies; (3) neither universities nor government-led research organizations were considered to be valuable sources of new information and knowledge in the industry׳s R&D initiatives, and; (4) despite the increasing degree of globalization in the marketplace, the USA still plays an extremely dominant role in the industry׳s overall R&D and technology deployment activities. By providing a detailed and objective snapshot of how innovation happens in the upstream oil & gas sector, this paper provides a valuable foundation for future investigations and discussions aimed at improving how R&D and technology deployment are managed within the industry. The methodology did result in a coverage bias within the survey, however, and the limitations arising from this are explored.
Resumo:
The upstream oil & gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data”—that is, the ability to apply more sophisticated types of analytical tools to information in a way that extracts new insights or creates new forms of value—is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil & gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This paper examines existing data management practices in the upstream oil & gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the Big Data revolution. The comparison shows that, in companies that are leading the Big Data revolution, data is regarded as a valuable asset. The presented evidence also shows, however, that this is usually not true within the oil & gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how upstream oil & gas companies could potentially extract more value from data, and concludes with a series of specific technical and management-related recommendations to this end.
Resumo:
Developing follicles and follicular cysts in the ovary are lined by granulosa cells. Approximately the size of histiocytes, non-neoplastic granulosa cells have scant granular to foamy cytoplasm and mildly atypical hyperchromatic nuclei, which may be mitotically active. 1 Displaced granulosa cells, derived from normal follicles and introduced into ovarian vascular channels, ovarian stroma and the fallopian tube, have been reported to cause diagnostic difficulty in histol- ogy, as they may mimic small cell carcinoma or other metastatic carcinomas. 2–4 The cells are thought to be displaced artefactually due to surgical trauma or during sectioning in the laboratory or during ovulation...
Resumo:
Bats (Mammalia: Chiroptera) are among the most successful mammals and likely display the widest range of mating systems within the Class. One mating system that is underrepresented in the Chiroptera is lek breeding, which is characterized by aggregations of sexually displaying males that are visited by receptive females who appraise male displays and actively choose mates, yet receive no direct benefits such as assistance in parenting. Leks are thought to form when males can defend neither resources nor females, making it more economical to establish small breeding territories and self-advertise through sexual displays. Lekking is rare in mammals, and it has been suggested that a lack in the mobility required by females to economically seek out aggregations of sexually displaying males may explain this rarity. Bats, like birds, do not suffer reduced mobility and yet out of over a thousand described species, only one has been confirmed to breed in leks. We examine the rarity of lekking in bats by providing an overview on the current state of knowledge of their mating systems and discuss the ecological and social determinants for the observed trends, contrasted with the prerequisites of lek-breeding behaviour. We use the breeding behaviour of New Zealand's lesser short-tailed bat Mystacina tuberculata, which is believed to be a lek breeder, as a case study for the examination of potential lekking behaviour in bats, and highlight the importance of such research for the development of effective conservation strategies.
Resumo:
One main challenge in developing a system for visual surveillance event detection is the annotation of target events in the training data. By making use of the assumption that events with security interest are often rare compared to regular behaviours, this paper presents a novel approach by using Kullback-Leibler (KL) divergence for rare event detection in a weakly supervised learning setting, where only clip-level annotation is available. It will be shown that this approach outperforms state-of-the-art methods on a popular real-world dataset, while preserving real time performance.