279 resultados para Range management.
Resumo:
The rising problems associated with construction such as decreasing quality and productivity, labour shortages, occupational safety, and inferior working conditions have opened the possibility of more revolutionary solutions within the industry. One prospective option is in the implementation of innovative technologies such as automation and robotics, which has the potential to improve the industry in terms of productivity, safety and quality. The construction work site could, theoretically, be contained in a safer environment, with more efficient execution of the work, greater consistency of the outcome and higher level of control over the production process. By identifying the barriers to construction automation and robotics implementation in construction, and investigating ways in which to overcome them, contributions could be made in terms of better understanding and facilitating, where relevant, greater use of these technologies in the construction industry so as to promote its efficiency. This research aims to ascertain and explain the barriers to construction automation and robotics implementation by exploring and establishing the relationship between characteristics of the construction industry and attributes of existing construction automation and robotics technologies to level of usage and implementation in three selected countries; Japan, Australia and Malaysia. These three countries were chosen as their construction industry characteristics provide contrast in terms of culture, gross domestic product, technology application, organisational structure and labour policies. This research uses a mixed method approach of gathering data, both quantitative and qualitative, by employing a questionnaire survey and an interview schedule; using a wide range of sample from management through to on-site users, working in a range of small (less than AUD0.2million) to large companies (more than AUD500million), and involved in a broad range of business types and construction sectors. Detailed quantitative (statistical) and qualitative (content) data analysis is performed to provide a set of descriptions, relationships, and differences. The statistical tests selected for use include cross-tabulations, bivariate and multivariate analysis for investigating possible relationships between variables; and Kruskal-Wallis and Mann Whitney U test of independent samples for hypothesis testing and inferring the research sample to the construction industry population. Findings and conclusions arising from the research work which include the ranking schemes produced for four key areas of, the construction attributes on level of usage; barrier variables; differing levels of usage between countries; and future trends, have established a number of potential areas that could impact the level of implementation both globally and for individual countries.
Resumo:
Principal Topic: It is well known that most new ventures suffer from a significant lack of resources, which increases the risk of failure (Shepherd, Douglas and Shanley, 2000) and makes it difficult to attract stakeholders and financing for the venture (Bhide & Stevenson, 1999). The Resource-Based View (RBV) (Barney, 1991; Wernerfelt, 1984) is a dominant theoretical base increasingly drawn on within Strategic Management. While theoretical contributions applying RBV in the domain of entrepreneurship can arguably be traced back to Penrose (1959), there has been renewed attention recently (e.g. Alvarez & Busenitz, 2001; Alvarez & Barney, 2004). This said, empirical work is in its infancy. In part, this may be due to a lack of well developed measuring instruments for testing ideas derived from RBV. The purpose of this study is to develop a measurement scales that can serve to assist such empirical investigations. In so doing we will try to overcome three deficiencies in current empirical measures used for the application of RBV to the entrepreneurship arena. First, measures for resource characteristics and configurations associated with typical competitive advantages found in entrepreneurial firms need to be developed. These include such things as alertness and industry knowledge (Kirzner, 1973), flexibility (Ebben & Johnson, 2005), strong networks (Lee et al., 2001) and within knowledge intensive contexts, unique technical expertise (Wiklund and Shepard, 2003). Second, the RBV has the important limitations of being relatively static and modelled on large, established firms. In that context, traditional RBV focuses on competitive advantages. However, newly established firms often face disadvantages, especially those associated with the liabilities of newness (Aldrich & Auster, 1986). It is therefore important in entrepreneurial contexts to expand to an investigation of responses to competitive disadvantage through an RBV lens. Conversely, recent research has suggested that resource constraints actually have a positive effect on firm growth and performance under some circumstances (e.g., George, 2005; Katila & Shane, 2005; Mishina et al., 2004; Mosakowski, 2002; cf. also Baker & Nelson, 2005). Third, current empirical applications of RBV measured levels or amounts of particular resources available to a firm. They infer that these resources deliver firms competitive advantage by establishing a relationship between these resource levels and performance (e.g. via regression on profitability). However, there is the opportunity to directly measure the characteristics of resource configurations that deliver competitive advantage, such as Barney´s well known VRIO (Valuable, Rare, Inimitable and Organized) framework (Barney, 1997). Key Propositions and Methods: The aim of our study is to develop and test scales for measuring resource advantages (and disadvantages) and inimitability for entrepreneurial firms. The study proceeds in three stages. The first stage developed our initial scales based on earlier literature. Where possible, we adapt scales based on previous work. The first block of the scales related to the level of resource advantages and disadvantages. Respondents were asked the degree to which each resource category represented an advantage or disadvantage relative to other businesses in their industry on a 5 point response scale: Major Disadvantage, Slight Disadvantage, No Advantage or Disadvantage, Slight Advantage and Major Advantage. Items were developed as follows. Network capabilities (3 items) were adapted from (Madsen, Alsos, Borch, Ljunggren & Brastad, 2006). Knowledge resources marketing expertise / customer service (3 items) and technical expertise (3 items) were adapted from Wiklund and Shepard (2003). flexibility (2 items), costs (4 items) were adapted from JIBS B97. New scales were developed for industry knowledge / alertness (3 items) and product / service advantages. The second block asked the respondent to nominate the most important resource advantage (and disadvantage) of the firm. For the advantage, they were then asked four questions to determine how easy it would be for other firms to imitate and/or substitute this resource on a 5 point likert scale. For the disadvantage, they were asked corresponding questions related to overcoming this disadvantage. The second stage involved two pre-tests of the instrument to refine the scales. The first was an on-line convenience sample of 38 respondents. The second pre-test was a telephone interview with a random sample of 31 Nascent firms and 47 Young firms (< 3 years in operation) generated using a PSED method of randomly calling households (Gartner et al. 2004). Several items were dropped or reworded based on the pre-tests. The third stage (currently in progress) is part of Wave 1 of CAUSEE (Nascent Firms) and FEDP (Young Firms), a PSED type study being conducted in Australia. The scales will be tested and analysed with a random sample of approximately 700 Nascent and Young firms respectively. In addition, a judgement sample of approximately 100 high potential businesses in each category will be included. Findings and Implications: The paper will report the results of the main study (stage 3 – currently data collection is in progress) will allow comparison of the level of resource advantage / disadvantage across various sub-groups of the population. Of particular interest will be a comparison of the high potential firms with the random sample. Based on the smaller pre-tests (N=38 and N=78) the factor structure of the items confirmed the distinctiveness of the constructs. The reliabilities are within an acceptable range: Cronbach alpha ranged from 0.701 to 0.927. The study will provide an opportunity for researchers to better operationalize RBV theory in studies within the domain of entrepreneurship. This is a fundamental requirement for the ability to test hypotheses derived from RBV in systematic, large scale research studies.
Resumo:
Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.
Resumo:
The literature on corporate identity management suggests that managing corporate identity is a strategically complex task embracing the shaping of a range of dimensions of organisational life. The performance measurement literature and its applications likewise now also emphasise organisational ability to incorporate various dimensions considering both financial and non-financial performance measures when assessing success. The inclusion of these soft non-financial measures challenges organisations to quantify intangible aspects of performance such as corporate identity, transforming unmeasurables into measurables. This paper explores the regulatory roles of the use of the balanced scorecard in shaping key dimensions of corporate identities in a public sector shared service provider in Australia. This case study employs qualitative interviews of senior managers and employees, secondary data and participant observation. The findings suggest that the use of the balanced scorecard has potential to support identity construction, as an organisational symbol, a communication tool of vision, and as strategy, through creating conversations that self-regulate behaviour. The development of an integrated performance measurement system, the balanced scorecard, becomes an expression of a desired corporate identity, and the performance measures and continuous process provide the resource for interpreting actual corporate identities. Through this process of understanding and mobilising the interaction, it may be possible to create a less obtrusive and more subtle way to control “what an organisation is”. This case study also suggests that the theoretical and practical fusion of the disciplinary knowledge around corporate identities and performance measurement systems could make a contribution to understanding and shaping corporate identities.
Resumo:
Business Service Management describes the emerging discipline dedicated to the IT-enabled management of services as corporate assets. Business Service Management deals with the service orientation of the organisation and the provisioning and use of business services. The term business service describes an autonomous transformational capability that is offered to and consumed by external or internal customers for their benefit. The prefix ‘business’ stresses that such a service has a market value, requires the ability to be managed internally as a corporate asset and that its implementation is technology-agnostic. While business services (or so called capabilities) have attracted the attention of many vendors and organisations, a lack of understanding of the activities required for the successful management of such business services remains a critical issue. In order to fill this gap, a framework consisting of Service Lifecycle Management, Service Value Management, Service Relationship Management and Service Enablement is proposed. This Framework has the potential to provide organisations with the much needed guidance in their attempts to convert current IT-driven service initiatives into successful service-centric business models.
Resumo:
Vendors provide reference process models as consolidated, off-the-shelf solutions to capture best practices in a given industry domain. Customers can then adapt these models to suit their specific requirements. Traditional process flexibility approaches facilitate this operation, but do not fully address it as they do not sufficiently take controlled change guided by vendors' reference models into account. This tension between the customer's freedom of adapting reference models, and the ability to incorporate with relatively low effort vendor-initiated reference model changes, thus needs to be carefully balanced. This paper introduces process extensibility as a new paradigm for customizing reference processes and managing their evolution over time. Process extensibility mandates a clear recognition of the different responsibilities and interests of reference model vendors and consumers, and is concerned with keeping the effort of customer-side reference model adaptations low while allowing sufficient room for model change.
Resumo:
The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.
Resumo:
Although the service-oriented paradigm has been well established in the technical domain for quite some time now, service governance is still considered a research gap. To ensure adequate governance, there is a necessity to manage services as first-class assets throughout the lifecycle. Now that the concept of ser-vice-orientation is also increasingly applied on the business level to structure an organisation’s capabili-ties, the problem has become an even bigger chal-lenge. This paper presents a generic business and software service lifecycle and aligns it with the com-mon management layers in organisations. Using ser-vice analysis as an example, it moreover illustrates how activities in the service lifecycle may vary on lower levels of granularity depending on the focus on business or software services.
Resumo:
This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data
Resumo:
This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. • Refining the development of a multi agent system for data mining in virtual environments (Active Worlds) by developing and implementing a filtering agent on the results obtained from applying data mining techniques on the maintenance data. • Integrating the filtering agent within the multi agents system in an interactive networked multi-user 3D virtual environment. • Populating maintenance data and discovering new rules of knowledge.
Resumo:
The construction industry is categorised as being an information-intensive industry and described as one of the most important industries in any developed country, facing a period of rapid and unparalleled change (Industry Science Resources 1999) (Love P.E.D., Tucker S.N. et al. 1996). Project communications are becoming increasingly complex, with a growing need and fundamental drive to collaborate electronically at project level and beyond (Olesen K. and Myers M.D. 1999; Thorpe T. and Mead S. 2001; CITE 2003). Yet, the industry is also identified as having a considerable lack of knowledge and awareness about innovative information and communication technology (ICT) and web-based communication processes, systems and solutions which may prove beneficial in the procurement, delivery and life cycle of projects (NSW Government 1998; Kajewski S. and Weippert A. 2000). The Internet has debatably revolutionised the way in which information is stored, exchanged and viewed, opening new avenues for business, which only a decade ago were deemed almost inconceivable (DCITA 1998; IIB 2002). In an attempt to put these ‘new avenues of business’ into perspective, this report provides an overall ‘snapshot’ of current public and private construction industry sector opportunities and practices in the implementation and application of web-based ICT tools, systems and processes (e-Uptake). Research found that even with a reserved uptake, the construction industry and its participating organisations are making concerted efforts (fortunately with positive results) in taking up innovative forms of doing business via the internet, including e-Tendering (making it possible to manage the entire tender letting process electronically and online) (Anumba C.J. and Ruikar K. 2002; ITCBP 2003). Furthermore, Government (often a key client within the construction industry),and with its increased tendency to transact its business electronically, undoubtedly has an effect on how various private industry consultants, contractors, suppliers, etc. do business (Murray M. 2003) – by offering a wide range of (current and anticipated) e-facilities / services, including e-Tendering (Ecommerce 2002). Overall, doing business electronically is found to have a profound impact on the way today’s construction businesses operate - streamlining existing processes, with the growth in innovative tools, such as e-Tender, offering the construction industry new responsibilities and opportunities for all parties involved (ITCBP 2003). It is therefore important that these opportunities should be accessible to as many construction industry businesses as possible (The Construction Confederation 2001). Historically, there is a considerable exchange of information between various parties during a tendering process, where accuracy and efficiency of documentation is critical. Traditionally this process is either paper-based (involving large volumes of supporting tender documentation), or via a number of stand-alone, non-compatible computer systems, usually costly to both the client and contractor. As such, having a standard electronic exchange format that allows all parties involved in an electronic tender process to access one system only via the Internet, saves both time and money, eliminates transcription errors and increases speed of bid analysis (The Construction Confederation 2001). Supporting this research project’s aims and objectives, researchers set to determine today’s construction industry ‘current state-of-play’ in relation to e-Tendering opportunities. The report also provides brief introductions to several Australian and International e-Tender systems identified during this investigation. e-Tendering, in its simplest form, is described as the electronic publishing, communicating, accessing, receiving and submitting of all tender related information and documentation via the internet, thereby replacing the traditional paper-based tender processes, and achieving a more efficient and effective business process for all parties involved (NT Governement 2000; NT Government 2000; NSW Department of Commerce 2003; NSW Government 2003). Although most of the e-Tender websites investigated at the time, maintain their tendering processes and capabilities are ‘electronic’, research shows these ‘eTendering’ systems vary from being reasonably advanced to more ‘basic’ electronic tender notification and archiving services for various industry sectors. Research also indicates an e-Tender system should have a number of basic features and capabilities, including: • All tender documentation to be distributed via a secure web-based tender system – thereby avoiding the need for collating paperwork and couriers. • The client/purchaser should be able to upload a notice and/or invitation to tender onto the system. • Notification is sent out electronically (usually via email) for suppliers to download the information and return their responses electronically (online). • During the tender period, updates and queries are exchanged through the same e-Tender system. • The client/purchaser should only be able to access the tenders after the deadline has passed. • All tender related information is held in a central database, which should be easily searchable and fully audited, with all activities recorded. • It is essential that tender documents are not read or submitted by unauthorised parties. • Users of the e-Tender system are to be properly identified and registered via controlled access. In simple terms, security has to be as good as if not better than a manual tender process. Data is to be encrypted and users authenticated by means such as digital signatures, electronic certificates or smartcards. • All parties must be assured that no 'undetected' alterations can be made to any tender. • The tenderer should be able to amend the bid right up to the deadline – whilst the client/purchaser cannot obtain access until the submission deadline has passed. • The e-Tender system may also include features such as a database of service providers with spreadsheet-based pricing schedules, which can make it easier for a potential tenderer to electronically prepare and analyse a tender. Research indicates the efficiency of an e-Tender process is well supported internationally, with a significant number, yet similar, e-Tender benefits identified during this investigation. Both construction industry and Government participants generally agree that the implementation of an automated e-Tendering process or system enhances the overall quality, timeliness and cost-effectiveness of a tender process, and provides a more streamlined method of receiving, managing, and submitting tender documents than the traditional paper-based process. On the other hand, whilst there are undoubtedly many more barriers challenging the successful implementation and adoption of an e-Tendering system or process, researchers have also identified a range of challenges and perceptions that seem to hinder the uptake of this innovative approach to tendering electronically. A central concern seems to be that of security - when industry organisations have to use the Internet for electronic information transfer. As a result, when it comes to e-Tendering, industry participants insist these innovative tendering systems are developed to ensure the utmost security and integrity. Finally, if Australian organisations continue to explore the competitive ‘dynamics’ of the construction industry, without realising the current and future, trends and benefits of adopting innovative processes, such as e-Tendering, it will limit their globalising opportunities to expand into overseas markets and allow the continuation of international firms successfully entering local markets. As such, researchers believe increased knowledge, awareness and successful implementation of innovative systems and processes raises great expectations regarding their contribution towards ‘stimulating’ the globalisation of electronic procurement activities, and improving overall business and project performances throughout the construction industry sectors and overall marketplace (NSW Government 2002; Harty C. 2003; Murray M. 2003; Pietroforte R. 2003). Achieving the successful integration of an innovative e-Tender solution with an existing / traditional process can be a complex, and if not done correctly, could lead to failure (Bourn J. 2002).
Resumo:
Australia’s civil infrastructure assets of roads, bridges, railways, buildings and other structures are worth billions of dollars. Road assets alone are valued at around A$ 140 billion. As the condition of assets deteriorate over time, close to A$10 billion is spent annually in asset maintenance on Australia's roads, or the equivalent of A$27 million per day. To effectively manage road infrastructures, firstly, road agencies need to optimise the expenditure for asset data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. A procedure for assessing investment decision for road asset management has been developed. The procedure includes: • A methodology for optimising asset data collection; • A methodology for calibrating deterioration prediction models; • A methodology for assessing risk-adjusted estimates for life-cycle cost estimates. • A decision framework in the form of risk map
Resumo:
The aim of this project is to develop a systematic investment decision-making framework for infrastructure asset management by incorporation economic justification, social and environmental consideration in the decision-making process. This project assesses the factors that are expected to provide significant impacts on the variability of expenditures. A procedure for assessing risk and reliability for project investment appraisals will be developed. The project investigates public perception, social and environmental impacts on road infrastructure investment. This research will contribute to the debate about how important social and environmental issues should be incorporated into the investment decision-making process for infrastructure asset management.
Resumo:
This document provides the findings of an international review of investment decision-making practices in road asset management. Efforts were concentrated on identifying the strategic objectives of agencies in road asset management, establishing and understanding criteria different organisations adopted and ascertaining the exact methodologies used by different countries and international organisations. Road assets are powerful drivers of economic development and social equity. They also have significant impacts on the natural and man-made environment. The traditional definition of asset management is “A systematic process of maintaining, upgrading and operating physical assets cost effectively. It combines engineering principles with sound business practices and economic theory and it provides tools to facilitate a more organised, logical approach to decision-making” (US Dept. of Transportation, 1999). In recent years, the concept has been broadened to cover the complexity of decision making, based on a wider variety of policy considerations as well as social and environmental issues rather than is covered by Benefit-Cost analysis and pure technical considerations. Current international practices are summarised in table 2. It was evident that Engineering-economic analysis methods are well advanced to support decision-making. A range of tools available supports performance predicting of road assets and associated cost/benefit in technical context. The need for considering triple plus one bottom line of social, environmental and economic as well as political factors in decision-making is well understood by road agencies around the world. The techniques used to incorporate these however, are limited. Most countries adopt a scoring method, a goal achievement matrix or information collected from surveys. The greater uncertainty associated with these non-quantitative factors has generally not been taken into consideration. There is a gap between the capacities of the decision-making support systems and the requirements from decision-makers to make more rational and transparent decisions. The challenges faced in developing an integrated decision making framework are both procedural and conceptual. In operational terms, the framework should be easy to be understood and employed. In philosophical terms, the framework should be able to deal with challenging issues, such as uncertainty, time frame, network effects, model changes, while integrating cost and non-cost values into the evaluation. The choice of evaluation techniques depends on the feature of the problem at hand, on the aims of the analysis, and on the underlying information base At different management levels, the complexity in considering social, environmental, economic and political factor in decision-making is different. At higher the strategic planning level, more non-cost factors are involved. The complexity also varies based on the scope of the investment proposals. Road agencies traditionally place less emphasis on evaluation of maintenance works. In some cases, social equity, safety, environmental issues have been used in maintenance project selection. However, there is not a common base for the applications.
Resumo:
Both in developed and developing economies, major public funding is invested in civil infrastructure assets. Efficiency and comfort level of expected and demanded living standards are largely dependant on the management strategies of these assets. Buildings are one of the major & vital assets, which need to be maintained primarily to ensure its functionality by effective & efficient delivery of services and to optimize economic benefits. Not withstanding, public building infrastructure is not considered in Infrastructure report card published by Australian Infrastructure Report Card Alliance Partners (2001). The reason appears to be not having enough data to rate public building infrastructure. American Infrastructure Report Card (2001) gave “School Buildings” ‘d-’ rating, which is below ‘poor’. For effective asset management of building infrastructure, a need emerged to optimise the budget for managing assets, to cope up with increased user expectations, to response effectively to possible asset failures, to deal with ageing of assets and aging populations and to treat other scenarios including technology advancement and non-asset solutions. John (Asset Management, 2001) suggests that in the area of asset management worldwide, UK, Australia and New Zealand are leading.