936 resultados para Physiologically Based
Resumo:
This paper presents a multi-objective optimization strategy for heavy truck suspension systems based on modified skyhook damping (MSD) control, which improves ride comfort and road-friendliness simultaneously. A four-axle heavy truck-road coupling system model was established using functional virtual prototype technology; the model was then validated through a ride comfort test. As the mechanical properties and time lag of dampers were taken into account, MSD control of active and semi-active dampers was implemented using Matlab/Simulink. Through co-simulations with Adams and Matlab, the effects of passive, semi-active MSD control, and active MSD control were analyzed and compared; thus, control parameters which afforded the best integrated performance were chosen. Simulation results indicated that MSD control improves a truck’s ride comfort and roadfriendliness, while the semi-active MSD control damper obtains road-friendliness comparable to the active MSD control damper.
Resumo:
The management of main material prices of provincial highway project quota has problems of lag and blindness. Framework of provincial highway project quota data MIS and main material price data warehouse were established based on WEB firstly. Then concrete processes of provincial highway project main material prices were brought forward based on BP neural network algorithmic. After that standard BP algorithmic, additional momentum modify BP network algorithmic, self-adaptive study speed improved BP network algorithmic were compared in predicting highway project main prices. The result indicated that it is feasible to predict highway main material prices using BP NN, and using self-adaptive study speed improved BP network algorithmic is the relatively best one.
Resumo:
This study employs BP neural network to simulate the development of Chinese private passenger cars. Considering the uncertain and complex environment for the development of private passenger cars, indicators of economy, population, price, infrastructure, income, energy and some other fields which have major impacts on it are selected at first. The network is proved to be operable to simulate the progress of chinese private passenger cars after modeling, training and generalization test. Based on the BP neural network model, sensitivity analysis of each indicator is carried on and shows that the sensitivity coefficients of fuel price change suddenly. This special phenomenon reveals that the development of Chinese private passenger cars may be seriously affected by the recent high fuel price. This finding is also consistent with facts and figures
Resumo:
This study sought to improve understanding of the persuasive process of emotion-based appeals not only in relation to negative, fear-based appeals but also for appeals based upon positive emotions. In particular, the study investigated whether response efficacy, as a cognitive construct, mediated outcome measures of message effectiveness in terms of both acceptance and rejection of negative and positive emotion-based messages. Licensed drivers (N = 406) participated via the completion of an on-line survey. Within the survey, participants received either a negative (fear-based) appeal or one of the two possible positive appeals (pride or humor-based). Overall, the study's findings confirmed the importance of emotional and cognitive components of persuasive health messages and identified response efficacy as a key cognitive construct influencing the effectiveness of not only fear-based messages but also positive emotion-based messages. Interestingly, however, the results suggested that response efficacy's influence on message effectiveness may differ for positive and negative emotion-based appeals such that significant indirect (and mediational) effects were found with both acceptance and rejection of the positive appeals yet only with rejection of the fear-based appeal. As such, the study's findings provide an important extension to extant literature and may inform future advertising message design.
Resumo:
The PISA assessment instruments for students’ scientific literacy in 2000, 2003 and 2006 have each consisted of units made up of a real world context involving Science and Technology, about which students are asked a number of cognitive and affective questions. This paper discusses a number of issues from this use of S&T contexts in PISA and the implications they have for the current renewed interest in context-based science education. Suitably chosen contexts can engage both boys and girls. Secondary analyses of the students’ responses using the contextual sets of items as the unit of analysis provides new information about the levels of performance in PISA 2006 Science. .Embedding affective items in the achievement test did not lead to gender/context interactions of significance, and context interactions were less than competency ones. A number of implications for context-based science teaching and learning are outlined and the PISA 2006 Science test is suggested as a model for its assessment.
Resumo:
In this paper we discuss our current efforts to develop and implement an exploratory, discovery mode assessment item into the total learning and assessment profile for a target group of about 100 second level engineering mathematics students. The assessment item under development is composed of 2 parts, namely, a set of "pre-lab" homework problems (which focus on relevant prior mathematical knowledge, concepts and skills), and complementary computing laboratory exercises which are undertaken within a fixed (1 hour) time frame. In particular, the computing exercises exploit the algebraic manipulation and visualisation capabilities of the symbolic algebra package MAPLE, with the aim of promoting understanding of certain mathematical concepts and skills via visual and intuitive reasoning, rather than a formal or rigorous approach. The assessment task we are developing is aimed at providing students with a significant learning experience, in addition to providing feedback on their individual knowledge and skills. To this end, a noteworthy feature of the scheme is that marks awarded for the laboratory work are primarily based on the extent to which reflective, critical thinking is demonstrated, rather than the amount of CBE-style tasks completed by the student within the allowed time. With regard to student learning outcomes, a novel and potentially critical feature of our scheme is that the assessment task is designed to be intimately linked to the overall course content, in that it aims to introduce important concepts and skills (via individual student exploration) which will be revisited somewhat later in the pedagogically more restrictive formal lecture component of the course (typically a large group plenary format). Furthermore, the time delay involved, or "incubation period", is also a deliberate design feature: it is intended to allow students the opportunity to undergo potentially important internal re-adjustments in their understanding, before being exposed to lectures on related course content which are invariably delivered in a more condensed, formal and mathematically rigorous manner. In our presentation, we will discuss in more detail our motivation and rationale for trailing such a scheme for the targeted student group. Some of the advantages and disadvantages of our approach (as we perceived them at the initial stages) will also be enumerated. In a companion paper, the theoretical framework for our approach will be more fully elaborated, and measures of student learning outcomes (as obtained from eg. student provided feedback) will be discussed.
Resumo:
This paper proposes a new prognosis model based on the technique for health state estimation of machines for accurate assessment of the remnant life. For the evaluation of health stages of machines, the Support Vector Machine (SVM) classifier was employed to obtain the probability of each health state. Two case studies involving bearing failures were used to validate the proposed model. Simulated bearing failure data and experimental data from an accelerated bearing test rig were used to train and test the model. The result obtained is very encouraging and shows that the proposed prognostic model produces promising results and has the potential to be used as an estimation tool for machine remnant life prediction.
Resumo:
A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL–TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL–TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL–TCP þ 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL–TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion.
Resumo:
The Resource Based View (RBV) of strategic management has been criticized for relying on inconsistent assumptions of rationality, and mutually inconsistent underlying hypotheses. In this paper, I outline how these critiques can be addressed by re-building RBV on a sense-making foundation. The core notions from sense-making of bounded cognition, retrospective sense-making, incrementalism, loose coupling, causal maps and organizational paradigm are introduced. These are then used to propose a re-construction of key RBV constructs, extending some conceptual discussions, and providing for a conceptually consistent formulation. Implications for the use of RBV as a theory and future research are discussed.
Resumo:
The aim of this paper is to provide a contemporary summary of statistical and non-statistical meta-analytic procedures that have relevance to the type of experimental designs often used by sport scientists when examining differences/change in dependent measure(s) as a result of one or more independent manipulation(s). Using worked examples from studies on observational learning in the motor behaviour literature, we adopt a random effects model and give a detailed explanation of the statistical procedures for the three types of raw score difference-based analyses applicable to between-participant, within-participant, and mixed-participant designs. Major merits and concerns associated with these quantitative procedures are identified and agreed methods are reported for minimizing biased outcomes, such as those for dealing with multiple dependent measures from single studies, design variation across studies, different metrics (i.e. raw scores and difference scores), and variations in sample size. To complement the worked examples, we summarize the general considerations required when conducting and reporting a meta-analysis, including how to deal with publication bias, what information to present regarding the primary studies, and approaches for dealing with outliers. By bringing together these statistical and non-statistical meta-analytic procedures, we provide the tools required to clarify understanding of key concepts and principles.
Resumo:
Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.