410 resultados para Physics Based Modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that users’ cognitive styles play an important role during Web searching. However, only limited studies have showed the relationship between cognitive styles and Web search behavior. Most importantly, it is not clear which components of Web search behavior are influenced by cognitive styles. This paper examines the relationships between users’ cognitive styles and their Web searching and develops a model that portrays the relationship. The study uses qualitative and quantitative analyses to inform the study results based on data gathered from 50 participants. A questionnaire was utilised to collect participants’ demographic information, and Riding’s (1991) Cognitive Style Analysis (CSA) test to assess their cognitive styles. Results show that users’ cognitive styles influenced their information searching strategies, query reformulation behaviour, Web navigational styles and information processing approaches. The user model developed in this study depicts the fundamental relationships between users’ Web search behavior and their cognitive styles. Modeling Web search behavior with a greater understanding of user’s cognitive styles can help information science researchers and information systems designers to bridge the semantic gap between the user and the systems. Implications of the research for theory and practice, and future work are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The common goal of tissue engineering is to develop substitutes that can closely mimic the structure of extracellular matrix (ECM). However, similarly important is the intensive material properties which have often been overlooked, in particular, for soft tissues that are not to bear load assumingly. The mechanostructural properties determine not only the structural stability of biomaterials but also their physiological functionality by directing cellular activity and regulating cell fate decision. The aim here is to emphasize that cells could sense intensive material properties like elasticity and reside, proliferate, migrate and differentiate accordinglyno matter if the construct is from a natural source like cartilage, skin etc. or of synthetic one. Meanwhile, the very objective of this work is to provide a tunable scheme for manipulating the elasticity of collagen-based constructs to be used to demonstrate how to engineer cell behavior and regulate mechanotransduction. Articular cartilage was chosen as it represents one of the most complex hierarchical arrangements of collagen meshwork in both connective tissues and ECM-like biomaterials. Corona discharge treatment was used to produce constructs with varying density of crosslinked collagen and stiffness accordingly. The results demonstrated that elastic modulus increased up to 33% for samples treated up to one minute as crosslink density was found to increase with exposure time. According to the thermal analysis, longer exposure to corona increased crosslink density as the denaturation enthalpy increased. However the spectroscopy results suggested that despite the stabilization of the collagen structure the integrity of the triple helical structure remained intact. The in vitro superficial culture of heterologous chondrocytes also determined that the corona treatment can modulate migration with increased focal adhesion of cells due to enhanced stiffness, without cytotoxicity effects, and providing the basis for reinforcing three-dimensional collagen-based biomaterials in order to direct cell function and mediate mechanotransduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lean strategies have been developed to eliminate or reduce waste and thus improve operational efficiency in a manufacturing environment. However, in practice, manufacturers encounter difficulties to select appropriate lean strategies within their resource constraints and to quantitatively evaluate the perceived value of manufacturing waste reduction. This paper presents a methodology developed to quantitatively evaluate the contribution of lean strategies selected to reduce manufacturing wastes within the manufacturers’ resource (time) constraints. A mathematical model has been developed for evaluating the perceived value of lean strategies to manufacturing waste reduction and a step-by-step methodology is provided for selecting appropriate lean strategies to improve the manufacturing performance within their resource constraints. A computer program is developed in MATLAB for finding the optimum solution. With the help of a case study, the proposed methodology and developed model has been validated. A ‘lean strategy-wastes’ correlation matrix has been proposed to establish the relationship between the manufacturing wastes and lean strategies. Using the correlation matrix and applying the proposed methodology and developed mathematical model, authors came out with optimised perceived value of reduction of a manufacturer's wastes by implementing appropriate lean strategies within a manufacturer's resources constraints. Results also demonstrate that the perceived value of reduction of manufacturing wastes can significantly be changed based on policies and product strategy taken by a manufacturer. The proposed methodology can also be used in dynamic situations by changing the input in the programme developed in MATLAB. By identifying appropriate lean strategies for specific manufacturing wastes, a manufacturer can better prioritise implementation efforts and resources to maximise the success of implementing lean strategies in their organisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coupling of kurtosis based-indexes and envelope analysis represents one of the most successful and widespread procedures for the diagnostics of incipient faults on rolling element bearings. Kurtosis-based indexes are often used to select the proper demodulation band for the application of envelope-based techniques. Kurtosis itself, in slightly different formulations, is applied for the prognostic and condition monitoring of rolling element bearings, as a standalone tool for a fast indication of the development of faults. This paper shows for the first time the strong analytical connection which holds for these two families of indexes. In particular, analytical identities are shown for the squared envelope spectrum (SES) and the kurtosis of the corresponding band-pass filtered analytic signal. In particular, it is demonstrated how the sum of the peaks in the SES corresponds to the raw 4th order moment. The analytical results show as well a link with an another signal processing technique: the cepstrum pre-whitening, recently used in bearing diagnostics. The analytical results are the basis for the discussion on an optimal indicator for the choice of the demodulation band, the ratio of cyclic content (RCC), which endows the kurtosis with selectivity in the cyclic frequency domain and whose performance is compared with more traditional kurtosis-based indicators such as the protrugram. A benchmark, performed on numerical simulations and experimental data coming from two different test-rigs, proves the superior effectiveness of such an indicator. Finally a short introduction to the potential offered by the newly proposed index in the field of prognostics is given in an additional experimental example. In particular the RCC is tested on experimental data collected on an endurance bearing test-rig, showing its ability to follow the development of the damage with a single numerical index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality of experience (QoE) measures the overall perceived quality of mobile video delivery from subjective user experience and objective system performance. Current QoE computing models have two main limitations: 1) insufficient consideration of the factors influencing QoE, and; 2) limited studies on QoE models for acceptability prediction. In this paper, a set of novel acceptability-based QoE models, denoted as A-QoE, is proposed based on the results of comprehensive user studies on subjective quality acceptance assessments. The models are able to predict users’ acceptability and pleasantness in various mobile video usage scenarios. Statistical regression analysis has been used to build the models with a group of influencing factors as independent predictors, including encoding parameters and bitrate, video content characteristics, and mobile device display resolution. The performance of the proposed A-QoE models has been compared with three well-known objective Video Quality Assessment metrics: PSNR, SSIM and VQM. The proposed A-QoE models have high prediction accuracy and usage flexibility. Future user-centred mobile video delivery systems can benefit from applying the proposed QoE-based management to optimize video coding and quality delivery decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, which has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering is rarely known. Patterns are always thought to be more representative than single terms for representing documents. In this paper, a novel information filtering model, Pattern-based Topic Model(PBTM) , is proposed to represent the text documents not only using the topic distributions at general level but also using semantic pattern representations at detailed specific level, both of which contribute to the accurate document representation and document relevance ranking. Extensive experiments are conducted to evaluate the effectiveness of PBTM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model achieves outstanding performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an accurate and robust geometric and material nonlinear formulation to predict structural behaviour of unprotected steel members at elevated temperatures. A fire analysis including large displacement effects for frame structures is presented. This finite element formulation of beam-column elements is based on the plastic hinge approach to model the elasto-plastic strain-hardening material behaviour. The Newton-Raphson method allowing for the thermal-time dependent effect was employed for the solution of the non-linear governing equations for large deflection in thermal history. A combined incremental and total formulation for determining member resistance is employed in this nonlinear solution procedure for the efficient modeling of nonlinear effects. Degradation of material strength with increasing temperature is simulated by a set of temperature-stress-strain curves according to both ECCS and BS5950 Part 8, which implicitly allows for creep deformation. The effects of uniform or non-uniform temperature distribution over the section of the structural steel member are also considered. Several numerical and experimental verifications are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research identifies factors that are crucial to the success of a knowledge management system (KMS) implementation in a prominent Australian engineering consultancy firm. The study employs the Delphi method to solicit the opinions of experienced market leaders in the Australian construction industry, and then benchmarks the organisational profile of the consultancy firm against the Delphi findings. From this comparative case study, recommendations are made pertaining to the organisational and cultural changes required within the consultancy firm in order to improve its readiness to successfully implement a KMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the predictions, the true potential of Nb2O5 for electrochromic applications has yet to be fully realized. In this work, three-dimensional (3D) compact and well-ordered nanoporous Nb2O5 films are synthesized by the electrochemical anodization of niobium thin films. These films are formed using RF sputtering and then anodized in an electrolyte containing ethylene glycol, ammonium fluoride, and small water content (4%) at 50 °C which resulted in low embedded impurities within the structure. Characterization of the anodized films shows that a highly crystalline orthorhombic phase of Nb2O5 is obtained after annealing at 450 °C. The 3D structure provides a template consisting of a large concentration of active sites for ion intercalation, while also ensuring low scattering directional paths for electrons. These features enhance the coloration efficiency to 47.0 cm2 C?1 (at 550 nm) for a 500 nm thick film upon Li+ ion intercalation. Additionally, the Nb2O5 electrochromic device shows a high bleached state transparency and large optical modulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q2) and low Standard Error of Cross-Validation (SECV) values indicates that the model is reliable, while the equation derived for wear-related metal load has low Q2 and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the K-means algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley’s Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.