298 resultados para Patient retrieval
Resumo:
We present a study to understand the effect that negated terms (e.g., "no fever") and family history (e.g., "family history of diabetes") have on searching clinical records. Our analysis is aimed at devising the most effective means of handling negation and family history. In doing so, we explicitly represent a clinical record according to its different content types: negated, family history and normal content; the retrieval model weights each of these separately. Empirical evaluation shows that overall the presence of negation harms retrieval effectiveness while family history has little effect. We show negation is best handled by weighting negated content (rather than the common practise of removing or replacing it). However, we also show that many queries benefit from the inclusion of negated content and that negation is optimally handled on a per-query basis. Additional evaluation shows that adaptive handing of negated and family history content can have significant benefits.
Resumo:
Relevation! is a system for performing relevance judgements for information retrieval evaluation. Relevation! is web-based, fully configurable and expandable; it allows researchers to effectively collect assessments and additional qualitative data. The system is easily deployed allowing assessors to smoothly perform their relevance judging tasks, even remotely. Relevation! is available as an open source project at: http://ielab.github.io/relevation.
Resumo:
Lymphoedema following cancer treatment is characterized by swelling, and adversely influences mobility, function and quality of life. There is no cure, but without treatment lymphedema may progress. Since lymphedema treatment options are costly and time consuming, understanding the influence of these, and other potential barriers, on treatment adherence is vital in reducing the public health burden of lymphedema. Complex physical therapy and compression are supported by scientific evidence and patients also perceive these treatments as effective for improving symptoms and function. Multiple treatments may be required to treat all aspects of the condition. Patients and health professionals should consider effect and costs when identifying optimal treatment strategies.
Resumo:
The top-k retrieval problem aims to find the optimal set of k documents from a number of relevant documents given the user’s query. The key issue is to balance the relevance and diversity of the top-k search results. In this paper, we address this problem using Facility Location Analysis taken from Operations Research, where the locations of facilities are optimally chosen according to some criteria. We show how this analysis technique is a generalization of state-of-the-art retrieval models for diversification (such as the Modern Portfolio Theory for Information Retrieval), which treat the top-k search results like “obnoxious facilities” that should be dispersed as far as possible from each other. However, Facility Location Analysis suggests that the top-k search results could be treated like “desirable facilities” to be placed as close as possible to their customers. This leads to a new top-k retrieval model where the best representatives of the relevant documents are selected. In a series of experiments conducted on two TREC diversity collections, we show that significant improvements can be made over the current state-of-the-art through this alternative treatment of the top-k retrieval problem.
Resumo:
The assumptions underlying the Probability Ranking Principle (PRP) have led to a number of alternative approaches that cater or compensate for the PRP’s limitations. All alternatives deviate from the PRP by incorporating dependencies. This results in a re-ranking that promotes or demotes documents depending upon their relationship with the documents that have been already ranked. In this paper, we compare and contrast the behaviour of state-of-the-art ranking strategies and principles. To do so, we tease out analytical relationships between the ranking approaches and we investigate the document kinematics to visualise the effects of the different approaches on document ranking.
Resumo:
In this paper, we consider the problem of document ranking in a non-traditional retrieval task, called subtopic retrieval. This task involves promoting relevant documents that cover many subtopics of a query at early ranks, providing thus diversity within the ranking. In the past years, several approaches have been proposed to diversify retrieval results. These approaches can be classified into two main paradigms, depending upon how the ranks of documents are revised for promoting diversity. In the first approach subtopic diversification is achieved implicitly, by choosing documents that are different from each other, while in the second approach this is done explicitly, by estimating the subtopics covered by documents. Within this context, we compare methods belonging to the two paradigms. Furthermore, we investigate possible strategies for integrating the two paradigms with the aim of formulating a new ranking method for subtopic retrieval. We conduct a number of experiments to empirically validate and contrast the state-of-the-art approaches as well as instantiations of our integration approach. The results show that the integration approach outperforms state-of-the-art strategies with respect to a number of measures.
Resumo:
In this paper we describe the approaches adopted to generate the runs submitted to ImageCLEFPhoto 2009 with an aim to promote document diversity in the rankings. Four of our runs are text based approaches that employ textual statistics extracted from the captions of images, i.e. MMR [1] as a state of the art method for result diversification, two approaches that combine relevance information and clustering techniques, and an instantiation of Quantum Probability Ranking Principle. The fifth run exploits visual features of the provided images to re-rank the initial results by means of Factor Analysis. The results reveal that our methods based on only text captions consistently improve the performance of the respective baselines, while the approach that combines visual features with textual statistics shows lower levels of improvements.
Resumo:
While the Probability Ranking Principle for Information Retrieval provides the basis for formal models, it makes a very strong assumption regarding the dependence between documents. However, it has been observed that in real situations this assumption does not always hold. In this paper we propose a reformulation of the Probability Ranking Principle based on quantum theory. Quantum probability theory naturally includes interference effects between events. We posit that this interference captures the dependency between the judgement of document relevance. The outcome is a more sophisticated principle, the Quantum Probability Ranking Principle, that provides a more sensitive ranking which caters for interference/dependence between documents’ relevance.
Resumo:
This research aimed to develop a framework for performance evaluation of public hospitals in Vietnam that is culturally, socially, and politically appropriate. The research included both qualitative and quantitative methods and identified and validated novel instruments to measure patient satisfaction and job satisfaction of hospital staff and to determine a set of hospital indicators that reflect the quality of hospital performance. New models for understanding the determinants of patient and staff satisfaction were developed along with a new performance indicator framework for hospital performance. These instruments will now be applied to the evaluation of hospital services in Khanh Hoa Province, permitting longer term evaluation of their effectiveness in changing system wide performance and satisfaction.
Feasibility of using technology to disseminate evidence to rural nurses and improve patient outcomes
Resumo:
Background: Rural African American women receive less frequent mammography screening and die of breast cancer at a higher rate than is seen in the general population. To overcome this disparity, it is necessary to assist rural providers in their efforts to influence women to obtain screening. Method: This study examined the feasibility of using distance education to disseminate knowledge about timely and appropriate mammography screening to rural nurses, using patient outcome data to evaluate the effectiveness of this intervention. Results: Overall, there was a decline in referrals and mammography screening, but the intervention group centers showed a smaller decline after the educational intervention than did the control group. Conclusion: The findings show the effect of dissemination of information and the feasibility of using patient outcome data for educational evaluation. Neighboring academic health centers and nursing schools should include in their mission the provision of educational programs for relatively isolated rural nurses.
Resumo:
We consider the following problem: users in a dynamic group store their encrypted documents on an untrusted server, and wish to retrieve documents containing some keywords without any loss of data confidentiality. In this paper, we investigate common secure indices which can make multi-users in a dynamic group to obtain securely the encrypted documents shared among the group members without re-encrypting them. We give a formal definition of common secure index for conjunctive keyword-based retrieval over encrypted data (CSI-CKR), define the security requirement for CSI-CKR, and construct a CSI-CKR based on dynamic accumulators, Paillier’s cryptosystem and blind signatures. The security of proposed scheme is proved under strong RSA and co-DDH assumptions.
Resumo:
A dynamic accumulator is an algorithm, which merges a large set of elements into a constant-size value such that for an element accumulated, there is a witness confirming that the element was included into the value, with a property that accumulated elements can be dynamically added and deleted into/from the original set. Recently Wang et al. presented a dynamic accumulator for batch updates at ICICS 2007. However, their construction suffers from two serious problems. We analyze them and propose a way to repair their scheme. We use the accumulator to construct a new scheme for common secure indices with conjunctive keyword-based retrieval.
Resumo:
The practice of medicine has always aimed at individualized treatment of disease. The relationship between patient and physician has always been a personal one, and the physician's choice of treatment has been intended to be the best fit for the patient's needs. The necessary pooling/grouping of disease families and their assignment to a number of drugs or treatment methods has, consequently, led to an increase in the number of effective therapies. However, given the heterogeneity of most human diseases, and cancer specifically, it is currently impossible for the treating clinician to effectively predict a patient's response and outcome based on current technologies, much less the idiosyncratic resistances and adverse effects associated with the limited therapeutic options.
Resumo:
While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a spinal deformity, which may require surgical correction by attaching rods to the patient’s spine using screws inserted into the vertebrae. Complication rates for deformity correction surgery are unacceptably high. Determining an achievable correction without overloading the adjacent spinal tissues or implants requires an understanding of the mechanical interaction between these components. We have developed novel patient specific modelling software to create individualized finite element models (FEM) representing the thoracolumbar spine and ribcage of scoliosis patients. We are using these models to better understand the biomechanics of spinal deformity correction.