219 resultados para Oxygen-dependent radioresistance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient yet inexpensive electrocatalysts for oxygen reduction reaction (ORR) are an essential component of renewable energy devices, such as fuel cells and metal-air batteries. We herein interleaved novel Co3O4 nanosheets with graphene to develop a first ever sheet-on-sheet heterostructured electrocatalyst for ORR, whose electrocatalytic activity outperformed the state-of-the-art commercial Pt/C with exceptional durability in alkaline solution. The composite demonstrates the highest activity of all the nonprecious metal electrocatalysts, such as those derived from Co3O4 nanoparticle/nitrogen-doped graphene hybrids and carbon nanotube/nanoparticle composites. Density functional theory (DFT) calculations indicated that the outstanding performance originated from the significant charge transfer from graphene to Co3O4 nanosheets promoting the electron transport through the whole structure. Theoretical calculations revealed that the enhanced stability can be ascribed to the strong interaction generated between both types of sheets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesels produced from different feedstocks usually have wide variations in their fatty acid methyl ester (FAME) so that their physical properties and chemical composition are also different. The aim of this study is to investigate the effect of the physical properties and chemical composition of biodiesels on engine exhaust particle emissions. Alongside with neat diesel, four biodiesels with variations in carbon chain length and degree of unsaturation have been used at three blending ratios (B100, B50, B20) in a common rail engine. It is found that particle emission increased with the increase of carbon chain length. However, for similar carbon chain length, particle emissions from biodiesel having relatively high average unsaturation are found to be slightly less than that of low average unsaturation. Particle size is also found to be dependent on fuel type. The fuel or fuel mix responsible for higher particle mass (PM) and particle number (PN) emissions is also found responsible for larger particle median size. Particle emissions reduced consistently with fuel oxygen content regardless of the proportion of biodiesel in the blends, whereas it increased with fuel viscosity and surface tension only for higher diesel–biodiesel blend percentages (B100, B50). However, since fuel oxygen content increases with the decreasing carbon chain length, it is not clear which of these factors drives the lower particle emission. Overall, it is evident from the results presented here that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid–interstitial fluid interaction, which depends on tissue permeability, is significant to the strain-rate-dependent mechanical behavior of humeral head (shoulder) cartilage. Due to anatomical and biomechanical similarities to that of the human shoulder, kangaroos present a suitable animal model. Therefore, indentation experiments were conducted on kangaroo shoulder cartilage tissues from low (10−4/s) to moderately high (10−2/s) strain-rates. A porohyperelastic model was developed based on the experimental characterization; and a permeability function that takes into account the effect of strain-rate on permeability (strain-rate-dependent permeability) was introduced into the model to investigate the effect of rate-dependent fluid flow on tissue response. The prediction of the model with the strain-rate-dependent permeability was compared with those of the models using constant permeability and strain-dependent permeability. Compared to the model with constant permeability, the models with strain-dependent and strain-rate-dependent permeability were able to better capture the experimental variation at all strain-rates (p<0.05). Significant differences were not identified between models with strain-dependent and strain-rate-dependent permeability at strain-rate of 5×10−3/s (p=0.179). However, at strain-rate of 10−2/s, the model with strain-rate-dependent permeability was significantly better at capturing the experimental results (p<0.005). The findings thus revealed the significance of rate-dependent fluid flow on tissue behavior at large strain-rates, which provides insights into the mechanical deformation mechanisms of cartilage tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organized Bi lines that are only 1.5 nm wide can be grown without kinks or breaks on Si(0 0 1) surfaces to lengths of up to 500 nm. Constant-current topographical images of the lines, obtained with the scanning tunneling microscope, have a striking bias dependence. Although the lines appear darker than the Si terraces at biases below ≈∣1.2∣ V, the contrast reverses at biases above ≈∣1.5∣ V. Between these two ranges the lines and terraces are of comparable brightness. It has been suggested that this bias dependence may be due to the presence of a semiconductor-like energy gap within the line. Using ab initio calculations it is demonstrated that the energy gap is too small to explain the experimentally observed bias dependence. Consequently, at this time, there is no compelling explanation for this phenomenon. An alternative explanation is proposed that arises naturally from calculations of the tunneling current, using the Tersoff–Hamann approximation, and an examination of the electronic structure of the line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption with in the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic properties of the arterial wall have been the subject of physiological, clinical and biomedical research for many years. There is convincing evidence that the elastic properties of the large arteries are seriously impaired in the presence of cardiovascular disease (CVD), due to alterations in the intrinsic structural and functional characteristics of vessels [1]. Early detection of changes in the elastic modulus of arteries would provide a powerful tool for both monitoring patients at high cardiovascular risk and testing the effects of pharmaceuticals aimed at stabilizing existing plaques by stiffening them or lowering the lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust estimation often relies on a dispersion function that is more slowly varying at large values than the square function. However, the choice of tuning constant in dispersion functions may impact the estimation efficiency to a great extent. For a given family of dispersion functions such as the Huber family, we suggest obtaining the "best" tuning constant from the data so that the asymptotic efficiency is maximized. This data-driven approach can automatically adjust the value of the tuning constant to provide the necessary resistance against outliers. Simulation studies show that substantial efficiency can be gained by this data-dependent approach compared with the traditional approach in which the tuning constant is fixed. We briefly illustrate the proposed method using two datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of growth models incorporating time-dependent factors and stochastic perturbations are introduced. The proposed model includes the existing growth models used in fisheries as special cases. Particular attention is given to growth of a population (in average weight or length) from which observations are taken randomly each time and the analysis of tag-recapture data. Two real data sets are used for illustration: (a) to estimate the seasonal effect and population density effect on growth of farmed prawn (Penaeus monodon) from weight data and (b) to assess the effect of tagging on growth of barramundi (Lates calcarifer)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural mortality of marine invertebrates is often very high in the early life history stages and decreases in later stages. The possible size-dependent mortality of juvenile banana prawns, P. merguiensis (2-15 mm carapace length) in the Gulf of Carpentaria was investigated. The analysis was based on the data collected at 2-weekly intervals by beam trawls at four sites over a period of six years (between September 1986 and March 1992). It was assumed that mortality was a parametric function of size, rather than a constant. Another complication in estimating mortality for juvenile banana prawns is that a significant proportion of the population emigrates from the study area each year. This effect was accounted for by incorporating the size-frequency pattern of the emigrants in the analysis. Both the extra parameter in the model required to describe the size dependence of mortality, and that used to account for emigration were found to be significantly different from zero, and the instantaneous mortality rate declined from 0.89 week(-1) for 2 mm prawns to 0.02 week(-1) for 15 mm prawns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical muscle stimulation (EMS) devices are being marketed as weight/ fat loss devices throughout the world. Commercially available stimulators have the ability to evoke muscle contractions that may affect caloric expenditure while the device is being used. The aim of this study was to test the effects of two different EMS devices (Abtronic and Feminique) on oxygen consumption at rest. Subjects arrived for testing after an overnight fast, had the devices fitted, and then positioned supine with expired air measured to determine oxygen consumption. After a 10-minute acclimation period, oxygen consumption was measured for 20 minutes with the device switched off (resting) then 20 minutes with the device switched on (stimulated). There were no significant differences (p > 0.05) in oxygen consumption between the resting and stimulated periods with either the Abtronic (mean +/- SD; resting, 3.40 +/- 0.44; stimulated, 3.45 +/- 0.53 ml of O2[middle dot]kg-1[middle dot]min-1) or the Feminique (resting, 3.73 +/- 0.45; stimulated, 3.75 +/- 0.46 ml of O2[middle dot]kg-1[middle dot]min-1). In summary, the EMS devices tested had no effect on oxygen consumption during muscle stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background CD14, a coreceptor for several pattern recognition receptors and a widely used monocyte/macrophage marker, plays a key role in host responses to gram-negative bacteria. Despite the central role of CD14 in the inflammatory response to lipopolysaccharide and other microbial products and in the dissemination of bacteria in some infections, the signaling networks controlled by CD14 during urinary tract infection (UTI) are unknown. Methods We used uropathogenic Escherichia coli (UPEC) infection of wild-type (WT) C57BL/6 and Cd14−/− mice and RNA sequencing to define the CD14-dependent transcriptional signature and the role of CD14 in host defense against UTI in the bladder. Results UPEC induced the upregulation of Cd14 and the monocyte/macrophage-related genes Emr1/F4/80 and Csf1r/c-fms, which was associated with lower UPEC burdens in WT mice, compared with Cd14−/− mice. Exacerbation of infection in Cd14−/− mice was associated with the absence of a 491-gene transcriptional signature in the bladder that encompassed multiple host networks not previously associated with this receptor. CD14-dependent pathways included immune cell trafficking, differential cytokine production in macrophages, and interleukin 17 signaling. Depletion of monocytes/macrophages in the bladder by administration of liposomal clodronate led to higher UPEC burdens. Conclusions This study identifies new host protective and signaling roles for CD14 in the bladder during UPEC UTI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxides of cobalt have recently been shown to be highly effective electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. In general species such as Co3O4 and CoOOH have been investigated that often require an elevated temperature step during their synthesis to create crystalline materials. In this work we investigate the rapid and direct electrochemical formation of amorphous nanostructured Co(OH)2 on gold electrodes under room temperture conditions which is a highly active precursor for the OER. During the OER some conversion to crystalline Co3O4 occurs at the surface, but the bulk of the material remains amorphous. It is found that the underlying gold electrode is crucial to the materials enhanced performance and provides higher current density than can be achieved using carbon, palladium or copper support electrodes. This catalyst exhibits excellent activity with a current density of 10 mA cm-2 at an overpotential of 360 mV with a high turnover frequency of 2.1 s-1 in 1 M NaOH. A Tafel slope of 56 mV dec-1 at low overpotentials and a slope of 122 mV dec-1 at high overpotentials is consistent with the dual barrier model for the electrocatalytic evolution of oxygen. Significantly, the catalyst maintains excellent activity for up to 24 hr of continuous operation and this approach offers a facile way to create a highly effective and stable material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.