239 resultados para Organic polymers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The supreme court of Western Australia handed down a landmark decision yesterday, on genetically modified crop liability. The ruling in Marsh v Baxter is an enormous win for the agricultural biotechnology industry, and has disappointed organic farmers and their advocates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follows a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids, is an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analysed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (Turbidity), organic matter (TOC, DOC, TN and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8% organic material and fed with tapwater with different antecedent dry days (0 – 40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 – 150 minutes and were tested for Total Organic Carbon, Dissolved Organic Carbon, Total Nitrogen, Total Kjeldhal Nitrogen and Turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 minutes while the other phase was observed across subsequent events that related to the age of filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the fabrication of nanostructured copper electrodes using a simple potential cycling protocol that involves oxidation and reduction of the surface in an alkaline solution. It was found that the inclusion of additives, such as benzyl alcohol and phenylacetic acid, has a profound effect on the surface oxidation process and the subsequent reduction of these oxides. This results in not only a morphology change, but also affects the electrocatalytic performance of the electrode for the reduction of nitrate ions. In all cases, the electrocatalytic performance of the restructured electrodes was significantly enhanced compared with the unmodified electrode. The most promising material was formed when phenylacetic acid was used as the additive. In addition, the reduction of residual oxides on the surface after the modification procedure to expose freshly active reaction sites on the surface before nitrate reduction was found to be a significant factor in dictating the overall electrocatalytic activity. It is envisaged that this approach offers an interesting way to fabricate other nanostructured electrode surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light emitting field effect transistors (LEFETs) are emerging as a multi-functional class of optoelectronic devices. LEFETs can simultaneously execute light emission and the standard logic functions of a transistor in a single architecture. However, current LEFET architectures deliver either high brightness or high efficiency but not both concurrently, thus limiting their use in technological applications. Here we show an LEFET device strategy that simultaneously improves brightness and efficiency. The key step change in LEFET performance arises from the bottom gate top-contact device architecture in which the source/drain electrodes are semitransparent and the active channel contains a bi-layer comprising of a high mobility charge-transporting polymer, and a yellow-green emissive polymer. A record external quantum efficiency (EQE) of 2.1% at 1000cd/m2 is demonstrated for polymer based bilayer LEFETs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a new organic photovoltaics (OPV) design, a wrapped OPV, which can circumvent both challenges of short exciton diffusion length [1], and low charge carrier mobility [2] of organic semiconductors by orienting the OPV vertically, to capture; manage; guide and use all incident photons and therefore, generate higher current. Resonant light, on being transmitted into a wrapped OPV, makes multiple passes through the photoactive layer and is absorbed completely, thus achieving benefits of thick photoactive layer while maintaining its ultra-thin thickness requirement. The current density generated from a wrapped OPV is twice than that generated by a similar OPV with flat orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High efficiency organic photovoltaic cells discussed in literature are normally restricted to devices fabricated on glass substrates. This is a consequence of the extreme brittleness and inflexibility of the commonly used transparent conductive oxide electrode, indium tin oxide (ITO). This shortcoming of ITO along with other concerns such as increasing scarcity of indium, migration of indium to organic layer, etc. makes it imperative to move away from ITO. Here we demonstrate a highly flexible Ag electrode that possesses low sheet resistances even in ultra-thin layers. It retains its conductivity under severe bending stresses where ITO fails completely. A P3HT:PCBM blend organic solar cell fabricated on this highly flexible electrode gives an efficiency of 2.3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical transmittance and conductivity for thin metallic films, such as Au, are two inversely related and extremely important parameters for its application in organic photovoltaics as the front electrode. We report our findings on how these parameters have been optimized to attain maximum possible efficiencies by fabricating organic solar cells with thin Au film anodes of differing optical transmittances and consequently due to scaling at the nanolevel, varying electrical conductivities. There was an extraordinary improvement in the overall solar cell efficiency (to the order of 49%) when the Au thin film transmittance was increased from 38% to 54%. Surface morphologies of these thin films also have an effect on the critical parameters including, Voc, Jsc and FF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible multilayer electrodes that combine high transparency, high conductivity, and efficient charge extraction have been deposited, characterised and used as the anode in organic solar cells. The anode consists of an AZO/Ag/AZO stack plus a very thin oxide interlayer whose ionization potential is fine-tuned by manipulating its gap state density to optimise charge transfer with the bulk heterojunction active layer consisting of poly(n-3- hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:BC61BM). The deposition method for the stack was compatible with the low temperatures required for polymer substrates. Optimisation of the electrode stack was achieved by modelling the optical and electrical properties of the device and a power conversion efficiency of 2.9% under AM1.5 illumination compared to 3.0% with an ITO-only anode and 3.5% for an ITO:PEDOT electrode. Dark I-V reverse bias characteristics indicate very low densities of occupied buffer states close to the HOMO level of the hole conductor, despite observed ionization potential being high enough. Their elimination should raise efficiency to that with ITO:PEDOT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared p-n junction organic photovoltaic cells using an all solution processing method with poly(3-hexylthiophene) (P3HT) as the donor and phenyl-C 61-butyric acid methyl ester (PCBM) as the acceptor. Interdigitated donor/acceptor interface morphology was observed in the device processed with the lowest boiling point solvent for PCBM used in this study. The influences of different solvents on donor/acceptor morphology and respective device performance were investigated simultaneously. The best device obtained had characteristically rough interface morphology with a peak to valley value ∼15 nm. The device displayed a power conversion efficiency of 1.78%, an open circuit voltage (V oc) 0.44 V, a short circuit current density (J sc) 9.4 mA/cm 2 and a fill factor 43%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel, solution-processable non-fullerene electron acceptor 9,9′-(5,5-dioctyl-5H-dibenzo [b,d]silole-3,7-diyl)bis(2,7-dioctyl-4-(octylamino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) (B3) based on dibenzosilole and naphthalenediimide building blocks was designed, synthesized, characterized and successfully used in a bulk-heterojunction organic solar cell. B3 displayed excellent solubility, thermal stability and acquired electron energy levels matching with those of archetypal donor polymer poly(3-hexylthiophene). Solution-processable bulk-heterojunction devices afforded 1.16% power conversion efficiency with a high fill factor of 53%. B3 is the first example in the literature using this design principle, where mild donor units at the peripheries of end-capped naphthalenediimide units tune solubility and optical energy levels simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional coordination polymeric structures of the hydrated potassium and rubidium salts of (3,5-dichlorophenoxy)acetic acid, (3,5-D) namely, poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]potassium, [K2(C8H5Cl2O3)2 (H2O)]n (I) and poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]dirubidium] [Rb2(C8H5Cl2O3)2 (H2O)]n (II), respectively have been determined and are described. The two compounds are isotypic and the polymer is based on centrosymmetric dinuclear bridged complex units. The irregular six-coordination about the metal centres comprises a bridging water molecule lying on a twofold rotation axis, the phenoxy O-atom donor and and a triple bridging carboxylate O-atom of the oxoacetate side chain of the 3,5-D ligand in a bidentate chelate mode, the second carboxy O-donor, also bridging. The K-O and Rb-O bond-length ranges are 2.7238(15)--2.9459(14) and 2.832(2)--3.050(2) \%A respectively and the K...K and Rb...Rb separations in the dinuclear unit are 4.0214(7) and 4.1289(6) \%A, respectively. Within the two-dimensional layers which lie parallel to (100), the coordinated water molecule forms an O---H...O hydrogen bond to the single bridging carboxylate O atom.