226 resultados para Oral epithelial dysplasia, Immunohistochemistry
Resumo:
Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.
Resumo:
Background Increases in the incidence of squamous cell oropharyngeal cancer (OPC) have been reported from some countries, but have not been assessed in Australia or New Zealand. This study examines trends for squamous cell OPC and squamous cell oral cavity cancer (OCC) in two similarly sized populations, New Zealand and Queensland, Australia. Methods Incidence data for 1982–2010 were obtained from the respective population-based cancer registries for squamous cell OPC and OCC, by subsite, sex, and age. Time trends and annual percentage changes (APCs) were assessed by joinpoint regression. Results The incidence rates of squamous cell OPC in males in New Zealand since 2005 and Queensland since 2006 have increased rapidly, with APCs of 11.9% and 10.6% respectively. The trends were greatest at ages 50–69 and followed more gradual increases previously. In females, rates increased by 2.1% per year in New Zealand from 1982, but by only 0.9% (not significant) in Queensland. In contrast, incidence rates for OCC decreased by 1.2% per year in males in Queensland since 1982, but remained stable for females in Queensland and for both sexes in New Zealand. Overall, incidence rates for both OCC and OPC were substantially higher in Queensland than in New Zealand. In males in both areas, OPC incidence is now higher than that of OCC. Conclusions Incidence rates of squamous cell OPC have increased rapidly in men, while rates of OCC have been stable or reducing, showing distinct etiologies. This has both clinical and public health importance, including implications for the extension of human papilloma virus (HPV) vaccination to males.
Resumo:
It is becoming increasing clear that microRNAs contribute to the regulation of many biological processes, including wound healing. After injury, keratinocytes need to undergo what is known as an epithelial-to-mesenchymal transition (EMT) to initiate re-epithelialisation. During this process, keratinocytes reduce their attachment to the underlying matrix, extend membrane protrusions, become motile and migrate over the wound bed, affecting wound closure. MicroRNAs that regulate EMT are aberrantly upregulated in keratinocytes at the edge of non-healing wounds and potentially play a role in the chronicity of these wounds. In vitro and in vivo, downregulation of these microRNAs promotes EMT and migration, facilitating re-epithelialisation in wound models. This review will focus on the role of microRNAs that regulate or have potential to regulate EMT and re-epithelialisation during wound healing
Resumo:
Anti-cancer drug loaded-nanoparticles (NPs) or encapsulation of NPs in colon-targeted delivery systems shows potential for increasing the local drug concentration in the colon leading to improved treatment of colorectal cancer. To investigate the potential of the NP-based strategies for colon-specific delivery, two formulations, free Eudragit® NPs and enteric-coated NP-loaded chitosan–hypromellose microcapsules (MCs) were fluorescently-labelled and their tissue distribution in mice after oral administration was monitored by multispectral small animal imaging. The free NPs showed a shorter transit time throughout the mouse digestive tract than the MCs, with extensive excretion of NPs in faeces at 5 h. Conversely, the MCs showed complete NP release in the lower region of the mouse small intestine at 8 h post-administration. Overall, the encapsulation of NPs in MCs resulted in a higher colonic NP intensity from 8 h to 24 h post-administration compared to the free NPs, due to a NP ‘guarding’ effect of MCs during their transit along mouse gastrointestinal tract which decreased NP excretion in faeces. These imaging data revealed that this widely-utilised colon-targeting MC formulation lacked site-precision for releasing its NP load in the colon, but the increased residence time of the NPs in the lower gastrointestinal tract suggests that it is still useful for localised release of chemotherapeutics, compared to NP administration alone. In addition, both formulations resided in the stomach of mice at considerable concentrations over 24 h. Thus, adhesion of NP- or MC-based oral delivery systems to gastric mucosa may be problematic for colon-specific delivery of the cargo to the colon and should be carefully investigated for a full evaluation of particulate delivery systems.
Resumo:
The prevalence of human papillomavirus (HPV)–associated head and neck cancers is increasing, but the prevalence of oral HPV infection in the wider community remains unknown. We sought to determine the prevalence of, and identify risk factors for, oral HPV infection in a sample of young, healthy Australians. For this study, we recruited 307 Australian university students (18–35 years). Participants reported anonymously about basic characteristics, sexual behaviour, and alcohol, tobacco and illicit drugs use. We collected oral rinse samples from all participants for HPV testing and typing. Seven of 307 (2.3%) students tested positive for oral HPV infection (3 HPV-18, one each of HPV-16, -67, -69, -90), and six of them were males (p = 0.008). Compared to HPV negative students, those with oral HPV infection were more likely to have received oral sex from more partners in their lifetime (p = 0.0004) and in the last year (p = 0.008). We found no statistically significant associations with alcohol consumption, smoking or numbers of partners for passionate kissing or sexual intercourse. In conclusion, oral HPV infection was associated with male gender and receiving oral sex in our sample of young Australians.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
Progeny of mice treated with the mutagen N-ethyl-N-nitrosourea (ENU) revealed a mouse, designated Longpockets (Lpk), with short humeri, abnormal vertebrae, and disorganized growth plates, features consistent with spondyloepiphyseal dysplasia congenita (SEDC). The Lpk phenotype was inherited as an autosomal dominant trait. Lpk/+ mice were viable and fertile and Lpk/Lpk mice died perinatally. Lpk was mapped to chromosome 15 and mutational analysis of likely candidates from the interval revealed a Col2a1 missense Ser1386Pro mutation. Transient transfection of wild-type and Ser1386Pro mutant Col2a1 c-Myc constructs in COS-7 cells and CH8 chondrocytes demonstrated abnormal processing and endoplasmic reticulum retention of the mutant protein. Histology revealed growth plate disorganization in 14-day-old Lpk/+ mice and embryonic cartilage from Lpk/+ and Lpk/Lpk mice had reduced safranin-O and type-II collagen staining in the extracellular matrix. The wild-type and Lpk/+ embryos had vertical columns of proliferating chondrocytes, whereas those in Lpk/Lpk mice were perpendicular to the direction of bone growth. Electron microscopy of cartilage from 18.5 dpc wild-type, Lpk/+, and Lpk/Lpk embryos revealed fewer and less elaborate collagen fibrils in the mutants, with enlarged vacuoles in the endoplasmic reticulum that contained amorphous inclusions. Micro-computed tomography (CT) scans of 12-week-old Lpk/+ mice revealed them to have decreased bone mineral density, and total bone volume, with erosions and osteophytes at the joints. Thus, an ENU mouse model with a Ser1386Pro mutation of the Col2a1 C-propeptide domain that results in abnormal collagen processing and phenotypic features consistent with SEDC and secondary osteoarthritis has been established.
Resumo:
Aims: To establish a model to measure bidirectional flow of water from a glucose oral rehydration solution (G-ORS) and a newly developed rice-based oral rehydration solution (R-ORS) using a dual isotope tracer technique in a rat perfusion model. To measure net water, sodium and potassium absorption from the ORS. Methods: In viva steady-state perfusion studies were carried out in normal and secreting (induced by cholera toxin) rat small intestine (n = 11 in each group). To determine bidirectional flow of water from the ORS the animals were initially labelled with tritium, and deuterium was added to the perfusion solution. Sequential perfusate and blood samples were collected after attainment of steady-state conditions and analysed for water and electrolyte content. Results: There was a significant increase in net water absorption from the R-ORS compared to the G-ORS in both the normal (P < 0.02) and secreting intestine (P < 0.05). Water efflux was significantly reduced in the R-ORS group compared to the G-ORS group in both the normal (P < 0.01) and the secreting intestine (P < 0.01). There was an increase in sodium absorption in the R-ORS group compared to the G-ORS. The G-ORS produced a significantly greater blood glucose level at 75 min compared to the R-ORS (P < 0.03) in the secreting intestine. Conclusions: This study demonstrates the improved water absorption from a rice-based ORS in both the normal and secreting intestine. Evidence that the absorption of water may be influenced by the osmolality of the ORS was also demonstrated.
Resumo:
A prospective randomized trial was conducted to compare the efficacy of a rice-based oral rehydration solution (ORS) with glucose ORS in infants and children under 5 years of age with acute diarrhoea and mild to moderate dehydration (<10%). One hundred children presenting to a large metropolitan teaching hospital were eligible for entry to the study and were randomized to receive rice ORS or glucose ORS. Outcome measures were stool output (SO), duration of illness (DD) and recovery time to introduction of other fluids (RTF) and diet (RTD). Significant differences were found for all outcome measures in favour of the rice ORS group. Mean SO was lower (160 vs 213 mt; P<0.02), mean DD was reduced (17.3 vs 24.3 h; P = 0.03) and median RTF was decreased (12.7 vs 18.1 h; P< 0.001) in the rice ORS group compared with the glucose ORS group. The median rime to introduction of diet and mean length of hospital stay showed similar significant reductions. Our study has shown rice ORS to be an acceptable alternative to glucose ORS in young children and have shown that it is significantly more effective in reducing the course of diarrhoeal illness and the time taken to return to normal drinking and eating habits.
Resumo:
Measurements were made of the intake of a WHO/UNICEF glucose-based and a rice cereal-based oral rehydration solution (ORS) by children with diarrhoea. Twenty children who presented to the Children's Outpatient Department at Port Moresby General Hospital with acute diarrhoea and mild dehydration were randomly assigned to an ORS and measurements were taken over the following 3 hours. For data analysis, the patients were paired by weight. Testing the means of the paired samples by t test showed that there was no significant difference between the amount of rice ORS and the amount of glucose ORS taken over 3 hours. The discovery of oral rehydration solution (ORS) for the treatment of diarrheal disease has been heralded as the most important medical discovery of the century. Cereal-based ORS is able to decrease stool output and the duration of diarrheal illness more than the standard glucose-based ORS, through the increased absorption provided by oligosaccharides without the imposition of a greater osmotic penalty. Moreover, the peptides in cereals enhance amino acid and water absorption, while providing nutritional benefits. UNICEF's glucose-based ORS is becoming more widely used in Papua New Guinea (PNG). 20 children aged 6-37 months (mean age, 15 months) who presented to the Children's Outpatient Department at Port Moresby General Hospital during September-October 1993 with acute diarrhea and mild dehydration were randomly assigned to receive either a rice-based ORS or standard glucose ORS, and measurements were taken over the following 3 hours. The patients were paired by weight for analysis. No statistically significant difference was found between the amount of rice ORS and the amount of glucose ORS taken over 3 hours.
Resumo:
The guardians of children brought to the Port Moresby General Hospital's Children's Outpatient Department with a chief complaint of diarrhoeal disease were questioned regarding their preference of glucose-based vs rice-based oral rehydration solution (ORS) in order to determine the acceptability of a rice-based ORS. Of the 93 guardians interviewed, greater than 60% preferred the glucose-based solution in its mixability, appearance and taste, and 65% initially reported that their children preferred the taste of the glucose solution. However, after a 30-minute trial, only 58% of children still preferred the glucose solution. In a country where diarrhoeal disease is a leading cause of child death and guardians are the primary health care providers, the acceptability of an ORS is critical to the morbidity and mortality of Papua New Guinea's children. Killing an estimated 2.9 million children annually, diarrheal disease is the second leading cause of child mortality worldwide. Diarrheal disease is also the second leading cause of child mortality in Papua New Guinea (PNG), killing an average 193 inpatient children per year over the period 1984-90. However, despite the high level of diarrhea-related mortality and the proven efficacy of oral rehydration therapy (ORT) in managing diarrhea-related dehydration, standardized ORT has been underutilized in PNG. The current glucose-based oral rehydration solution (ORS) does not reduce the frequency or volume of a child's diarrhea, the most immediate concern of caregivers during episodes of illness. Cereal-based ORS, made from cereals which are commonly available as food staples in most countries, better address the short-term concerns of caregivers while offering a superior nutritional profile. A sample of guardians of children brought to the Port Moresby General Hospital's Children's Outpatient Department complaining of child diarrhea were asked about their preferences on glucose-based versus rice-based ORS in order to determine the acceptability of a rice-based ORS. More than 60% of the 93 guardians interviewed preferred the glucose-based solution for its mixability, appearance, and taste. 65% initially reported that their children preferred the taste of the glucose solution. However, after a 30-minute trial, only 58% of children still preferred the glucose solution.
Resumo:
An open-label, inpatient study was undertaken to compare the efficacy of two oral rehydration solutions (ORS) given randomly to children aged 1-10 years who had acute gastroenteritis with mild or moderate dehydration (n = 45). One solution contained 60 mmol/L sodium and 1.8% glucose, total osmolality 240 mosm/l (gastrolyte, Rhone-poulenc, Rorer) and the other contained 26 mmol/l sodium, 2.7% glucose and 3.6% sucrose, total osmolality 340 mOsm/l (Glucolyte, Gilseal). Analysis of data indicated that Gastrolyte therapy resulted in significantly fewer episodes and volume of vomiting over all time periods in comparison to Glucolyte and significantly less stool volume during the first 8 h and in the 0-24 h period. The differences between treatments in degree of dehydration at each follow-up period, duration of diarrhea, and duration of hospital stay were not significant. No adverse drug reactions occurred. Six patients received intravenous rehydration treatment and were considered treatment failures. We conclude that oral rehydration therapy is safe and efficacious in the management of dehydration in acute diarrhoea and that the lower osmolar rehydration solution has clinically marginal advantages.
Resumo:
An open-label inpatient study is in progress to compare the efficacy and safety of two oral rehydration solutions in children and infants with acute diarrhea and mild to moderate dehydration. One solution (ORS-60) contains 60 mmol/L of sodium and 1.8% glucose, with a total osmolatity of 240 mosm/kg; the other (ORS-26) contains 26 mmol/L of sodium, 2.7% glucose, and 3.6% sucrose, with a total osmolality of 340 mosm/kg. An outcome analysis of 28 children with gastroenteritis indicated that ORS-60 (n = 13) reduced stool volume during the first eight hours after admission to a significantly greater (P < 0.05) extent than did ORS-26 (n = 15). Diarrhea had ceased by 24 hours in 64% of ORS-60 patients but in only 31% of ORS-26 patients, and the patients' clinical conidition was improved at eight hours in 84% of ORS-60 patients versus 60% of ORS-26 patients. Differences between treatments in degree of dehydration at each follow-up point, total duration of diarrhea, and duration of hospital stay were not detected. No adverse drug reactions occurred. Four patients received intravenous rehydration therapy, but none was considered a treatment failure. We conclude that the lower osmolar solution, ORS-60, conferred earlier recovey and reduced continuing fluid losses in the management of gastroenteritis.
Resumo:
Introduction Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. Results Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3±12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2–449) compared to adults (620 U/L, 48–1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. Discussion and Conclusion During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral–and hence gut–microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity.