199 resultados para Optics|Biophysics
Resumo:
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Resumo:
Purpose To examine whether anterior scleral and conjunctival thickness undergoes significant diurnal variation over a 24-hour period. Methods Nineteen healthy young adults (mean age 22 ± 2 years) with minimal refractive error (mean spherical equivalent refraction -0.08 ± 0.39 D), had measures of anterior scleral and conjunctival thickness collected using anterior segment optical coherence tomography (AS-OCT) at seven measurement sessions over a 24-hour period. The thickness of the temporal anterior sclera and conjunctiva were determined at 6 locations (each separated by 0.5 mm) at varying distances from the scleral spur for each subject at each measurement session. Results Both the anterior sclera and conjunctiva were found to undergo significant diurnal variations in thickness over a 24-hour period (both p <0.01). The sclera and conjunctiva exhibited a similar pattern of diurnal change, with a small magnitude thinning observed close to midday, and a larger magnitude thickening observed in the early morning immediately after waking. The amplitude of diurnal thickness change was larger in the conjunctiva (mean amplitude 69 ± 29 μm) compared to the sclera (21 ± 8 μm). The conjunctiva exhibited its smallest magnitude of change at the scleral spur location (mean amplitude 56 ± 17 μm) whereas the sclera exhibited its largest magnitude of change at this location (52 ± 21 μm). Conclusions This study provides the first evidence of diurnal variations occurring in the thickness of the anterior sclera and conjunctiva. Studies requiring precise measures of these anatomical layers should therefore take time of day into consideration. The majority of the observed changes occurred in the early morning immediately after waking and were of larger magnitude in the conjunctiva compared to the sclera. Thickness changes at other times of the day were of smaller magnitude and generally not statistically significant.
Resumo:
Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature.
Resumo:
Background Wavefront-guided Laser-assisted in situ keratomileusis (LASIK) is a widespread and effective surgical treatment for myopia and astigmatic correction but whether it induces higher-order aberrations remains controversial. The study was designed to evaluate the changes in higher-order aberrations after wavefront-guided ablation with IntraLase femtosecond laser in moderate to high astigmatism. Methods Twenty-three eyes of 15 patients with moderate to high astigmatism (mean cylinder, −3.22 ± 0.59 dioptres) aged between 19 and 35 years (mean age, 25.6 ± 4.9 years) were included in this prospective study. Subjects with cylinder ≥ 1.5 and ≤2.75 D were classified as moderate astigmatism while high astigmatism was ≥3.00 D. All patients underwent a femtosecond laser–enabled (150-kHz IntraLase iFS; Abbott Medical Optics Inc) wavefront-guided ablation. Uncorrected (UDVA), corrected (CDVA) distance visual acuity in logMAR, keratometry, central corneal thickness (CCT) and higher-order aberrations (HOAs) over a 6 mm pupil, were assessed before and 6 months, postoperatively. The relationship between postoperative change in HOA and preoperative mean spherical equivalent refraction, mean astigmatism, and postoperative CCT were tested. Results At the last follow-up, the mean UDVA was increased (P < 0.0001) but CDVA remained unchanged (P = 0.48) and no eyes lost ≥2 lines of CDVA. Mean spherical equivalent refraction was reduced (P < 0.0001) and was within ±0.50 D range in 61 % of eyes. The average corneal curvature was flatter by 4 D and CCT was reduced by 83 μm (P < 0.0001, for all), postoperatively. Coma aberrations remained unchanged (P = 0.07) while the change in trefoil (P = 0.047) postoperatively, was not clinically significant. The 4th order HOAs (spherical aberration and secondary astigmatism) and the HOA root mean square (RMS) increased from −0.18 ± 0.07 μm, 0.04 ± 0.03 μm and 0.47 ± 0.11 μm, preoperatively, to 0.33 ± 0.19 μm (P = 0.004), 0.21 ± 0.09 μm (P < 0.0001) and 0.77 ± 0.27 μm (P < 0.0001), six months postoperatively. The change in spherical aberration after the procedure increased with an increase in the degree of preoperative myopia. Conclusions Wavefront-guided IntraLASIK offers a safe and effective option for vision and visual function improvement in astigmatism. Although, reduction of HOA is possible in a few eyes, spherical-like aberrations are increased in majority of the treated eyes.