353 resultados para Optical testing
Resumo:
In this paper we explore the relationship between monthly random breath testing (RBT) rates (per 1000 licensed drivers) and alcohol-related traffic crash (ARTC) rates over time, across two Australian states: Queensland and Western Australia. We analyse the RBT, ARTC and licensed driver rates across 12 years; however, due to administrative restrictions, we model ARTC rates against RBT rates for the period July 2004 to June 2009. The Queensland data reveals that the monthly ARTC rate is almost flat over the five year period. Based on the results of the analysis, an average of 5.5 ARTCs per 100,000 licensed drivers are observed across the study period. For the same period, the monthly rate of RBTs per 1000 licensed drivers is observed to be decreasing across the study with the results of the analysis revealing no significant variations in the data. The comparison between Western Australia and Queensland shows that Queensland's ARTC monthly percent change (MPC) is 0.014 compared to the MPC of 0.47 for Western Australia. While Queensland maintains a relatively flat ARTC rate, the ARTC rate in Western Australia is increasing. Our analysis reveals an inverse relationship between ARTC RBT rates, that for every 10% increase in the percentage of RBTs to licensed driver there is a 0.15 decrease in the rate of ARTCs per 100,000 licenced drivers. Moreover, in Western Australia, if the 2011 ratio of 1:2 (RBTs to annual number of licensed drivers) were to double to a ratio of 1:1, we estimate the number of monthly ARTCs would reduce by approximately 15. Based on these findings we believe that as the number of RBTs conducted increases the number of drivers willing to risk being detected for drinking driving decreases, because the perceived risk of being detected is considered greater. This is turn results in the number of ARTCs diminishing. The results of this study provide an important evidence base for policy decisions for RBT operations.
Resumo:
The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.
Resumo:
Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A series of large-scale tests were performed in order to provide experimental results for verification of the new analytical models. Each of the test frames comprised non-compact sections, and exhibited significant local buckling behaviour prior to failure. This paper presents details of the test program including the test specimens, set-up and instrumentation, procedure, and results.
Resumo:
The purpose of this investigation is to present an overview of roadside drug driving enforcement and detections in Queensland, Australia since the introduction of oral fluid screening. Drug driving is a problematic issue for road safety and investigations of the prevalence and impact of drug driving suggest that, in particular, the use of illicit drugs may increase a driver’s involvement in a road crash when compared to a driver who is drug free. In response to the potential increased crash involvement of drug impaired drivers, Australian police agencies have adopted the use of oral fluid analysis to detect the presence of illicit drugs in drivers. This paper describes the results of roadside drug testing for over 80,000 drivers in Queensland, Australia, from December 2007 to June 2012. It provides unique data on the prevalence of methamphetamine, cannabis and ecstasy in the screened population for the period. When prevalence rates are examined over time, drug driving detection rates have almost doubled from around 2.0% at the introduction of roadside testing operations to just under 4.0% in the latter years. The most common drug type detected was methamphetamine (40.8%) followed by cannabis (29.8%) and methamphetamine/cannabis combination (22.5%). By comparison, the rate of ecstasy detection was very low (1.7%). The data revealed a number of regional, age and gender patterns and variations of drug driving across the state. Younger drivers were more likely to test positive for cannabis whilst older drivers were more likely to test positive for methamphetamine. The overall characteristics of drivers who tested positive to the presence of at least one of the target illicit drugs are they are likely to be male, aged 30-39 years, be driving a car on Friday, Saturday or Sunday between 6:00PM and 6:00AM and to test positive for methamphetamine.
Resumo:
An extended theory of planned behavior (TPB) was used to understand the factors, particularly control perceptions and affective reactions, given conflicting findings in previous research, informing younger people's intentions to join a bone marrow registry. Participants (N = 174) completed attitude, subjective norm, perceived behavioral control (PBC), moral norm, anticipated regret, self-identity, and intention items for registering. The extended TPB (except PBC) explained 67.2% of variance in intention. Further testing is needed as to the volitional nature of registering. Moral norm, anticipated regret, and self-identity are likely intervention targets for increasing younger people's bone marrow registry participation.
Resumo:
This paper describes a generic and integrated solar powered remote Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the UASs as well as a data management platform to store, analyse and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, opening the way to a ubiquitous low cost environmental monitoring. A video of the bench and flight test performed can be seen in the following link https://www.youtube.com/watch?v=Bwas7stYIxQ.
Resumo:
Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.
Resumo:
The objective of this study was to test for the measurement invariance of the Attention and Thought Problems subscales of the Child Behavior Checklist (CBCL) and Youth Self-Report (YSR) in a population-based sample of adolescents with and without epilepsy. Data were obtained from the 14-year follow-up of the Mater University Study of Pregnancy in which 33 adolescents with epilepsy and 1068 healthy controls were included for analysis. Confirmatory factor analysis was used to test for measurement invariance between adolescents with and without epilepsy. Structural equation modeling was used to test for group differences in attention and thought problems as measured with the CBCL and YSR. Measurement invariance was demonstrated for the original CBCL Attention Problems and YSR Thought Problems. After the removal of ambiguous items (“confused” and “daydreams”),measurement invariance was established for the YSR Attention Problems. The original and reduced CBCL Thought Problems were noninvariant. Adolescents with epilepsy had significantly more symptoms of behavioral problems on the CBCL Attention Problems, β = 0.51, p = 0.002, compared with healthy controls. In contrast, no significant differences were found for the YSR Attention and Thought Problems, β = −0.11, p = 0.417 and β = −0.20, p = 0.116, respectively. In this population-based sample of adolescents with epilepsy, the CBCL Attention Problems and YSR Thought Problems appear to be valid measures of behavioral problems, whereas the YSR Attention Problems was valid only after the removal of ambiguous items. Replication of these findings in clinical samples of adolescents with epilepsy that overcome the limitations of the current study is warranted.
Resumo:
We have developed a method to test the cytotoxicity of wound dressings, ointments, creams and gels used in our Burn Centre, by placing them on a permeable Nunc Polycarbonate cell culture insert, incubated with a monolayer of cells (HaCaTs and primary human keratinocytes). METHODS: We performed two different methods to determine the relative toxicity to cells. (1) Photo visualisation: The dressings or compounds were positioned on the insert's membrane which was placed onto the monolayer tissue culture plate. After 24 h the surviving adherent cells were stained with Toluidine Blue and photos of the plates were taken. The acellular area of non-adherent dead cells which had been washed off with buffer was measured as a percentage of the total area of the plate. (2) Cell count of surviving cells: After 24 h incubation with the test material, the remaining cells were detached with trypsin, spun down and counted in a Haemocytometer with Trypan Blue, which differentiates between live and dead cells. RESULTS: Seventeen products were tested. The least cytotoxic products were Melolite, White soft Paraffin and Chlorsig1% Ointment. Some cytotoxicity was shown with Jelonet, Mepitel((R)), PolyMem((R)), DuoDerm((R)) and Xeroform. The most cytotoxic products included those which contained silver or Chlorhexidine and Paraffin Cream a moisturizer which contains the preservative Chlorocresol. CONCLUSION: This in vitro cell culture insert method allows testing of agents without direct cell contact. It is easy and quick to perform, and should help the clinician to determine the relative cytotoxicity of various dressings and the optimal dressing for each individual wound.
Resumo:
Purpose To examine choroidal thickness (ChT) and its topographical variation across the posterior pole in myopic and non-myopic children. Methods One hundred and four children aged 10-15 years of age (mean age 13.1 ± 1.4 years) had ChT measured using enhanced depth imaging optical coherence tomography (OCT). Forty one children were myopic (mean spherical equivalent -2.4 ± 1.5 D) and 63 non-myopic (mean +0.3 ± 0.3 D). Two series of 6 radial OCT line scans centred on the fovea were assessed for each child. Subfoveal ChT and ChT across a series of parafoveal zones over the central 6mm of the posterior pole were determined through manual image segmentation. Results Subfoveal ChT was significantly thinner in myopes (mean 303 ± 79 µm) compared to non-myopes (mean 359 ± 77 µm) (p<0.0001). Multiple regression analysis revealed both refractive error (r = 0.39, p<0.001) and age (r = 0.21, p = 0.02) were positively associated with subfoveal ChT. ChT also exhibited significant topographical variations, with the choroid being thicker in more central regions. The thinnest choroid was typically observed in nasal (mean 286 ± 77 µm) and inferior-nasal (306 ± 79 µm) locations, and the thickest in superior (346 ± 79 µm) and superior-temporal (341 ± 74 µm) locations. The difference in ChT between myopic and non-myopic children was significantly greater in central foveal regions compared to more peripheral regions (>3 mm diameter) (p<0.001). Conclusions Myopic children have significantly thinner choroids compared to non-myopic children of similar age, particularly in central foveal regions. The magnitude of difference in choroidal thickness associated with myopia appears greater than would be predicted by a simple passive choroidal thinning with axial elongation.
Resumo:
In presented method combination of Fourier and Time domain detection enables to broaden the effective bandwidth for time dependent Doppler Signal that allows for using higher-order Bessel functions to calculate unambiguously the vibration amplitudes.
Resumo:
Background Drink driving among women is a growing problem in many motorised countries. While research has shown that male and female drink drivers differ on a number of characteristics, few studies have addressed the circumstances surrounding women’s drink driving offences specifically. Aim To add to previous research by comparing apprehension characteristics among men and women and to extend the understanding of the female drink driving problem by investigating the drink driving characteristics that are unique to women. Results The sample consisted of the 248,173 (21.5% women) drink drivers apprehended between 2000 and 2011 in Queensland, Australia. Gender comparisons showed that women were older, had lower levels of reoffending, and were more likely to be apprehended in Major Cities compared to men. Comparisons of age group and reoffending and non-reoffending among female drink drivers only revealed that higher BAC readings were more common among younger women. Moreover, a substantial minority (13.7%) of women aged 24 years or younger were apprehended with a BAC below0.05%, reflecting a breach of the zero tolerance BAC for provisional licence holders in Australia. Older women were more likely to be charged with a ‘failure to provide a test’ offence as a result of refusing to provide a breath or blood sample, indicating that drink driving is associated high levels of stigma for this group. Reoffending occurred among 16.2% of the female drink drivers and these drivers were more likely than non-reoffending drivers to record a mid to high range BAC, to be aged 30-39 or below 21years, and to be apprehended in Inner Regional or Remote locations. Conclusion Findings highlight the unique circumstances and divergent needs of female drink drivers compared to male drivers and for different groups of female drivers.
Resumo:
We present a pole inspection system for outdoor environments comprising a high-speed camera on a vertical take-off and landing (VTOL) aerial platform. The pole inspection task requires a vehicle to fly close to a structure while maintaining a fixed stand-off distance from it. Typical GPS errors make GPS-based navigation unsuitable for this task however. When flying outdoors a vehicle is also affected by aerodynamics disturbances such as wind gusts, so the onboard controller must be robust to these disturbances in order to maintain the stand-off distance. Two problems must therefor be addressed: fast and accurate state estimation without GPS, and the design of a robust controller. We resolve these problems by a) performing visual + inertial relative state estimation and b) using a robust line tracker and a nested controller design. Our state estimation exploits high-speed camera images (100Hz) and 70Hz IMU data fused in an Extended Kalman Filter (EKF). We demonstrate results from outdoor experiments for pole-relative hovering, and pole circumnavigation where the operator provides only yaw commands. Lastly, we show results for image-based 3D reconstruction and texture mapping of a pole to demonstrate the usefulness for inspection tasks.