233 resultados para Nicholas of Cusa
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
Endometriosis is primarily characterized by the presence of tissue resembling endometrium outside the uterine cavity and is usually diagnosed by laparoscopy. The most commonly used classification of disease, the revised American Fertility Society (rAFS) system to grade endometriosis into different stages based on disease severity (I to IV), has been questioned as it does not correlate well with underlying symptoms, posing issues in diagnosis and choice of treatment. Using two independent European genome-wide association (GWA) datasets and top-level classification of the endometriosis cases based on rAFS [minimal or mild (Stage A) and moderate-to-severe (Stage B) disease], we previously showed that Stage B endometriosis has greater contribution of common genetic variation to its aetiology than Stage A disease. Herein, we extend our previous analysis to four endometriosis stages [minimal (Stage I), mild (Stage II), moderate (Stage III) and severe (Stage IV) disease] based on the rAFS classification system and compared the genetic burden across stages. Our results indicate that genetic burden increases from minimal to severe endometriosis. For the minimal disease, genetic factors may contribute to a lesser extent than other disease categories. Mild and moderate endometriosis appeared genetically similar, making it difficult to tease them apart. Consistent with our previous reports, moderate and severe endometriosis showed greater genetic burden than minimal or mild disease. Overall, our results provide new insights into the genetic architecture of endometriosis and further investigation in larger samples may help to understand better the aetiology of varying degrees of endometriosis, enabling improved diagnostic and treatment modalities.
Resumo:
The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are associated with AGA development. However, a significant fraction of the overall heritable risk still awaits identification. Furthermore, the understanding of the pathophysiology of AGA is incomplete, and each newly associated locus may provide novel insights into contributing biological pathways. The aim of this study was to identify unknown AGA risk loci by replicating SNPs at the 12 genomic loci that showed suggestive association (5 x 10(-8)
of European descent to confirm the association with AGA at these loci. Combined analysis of the replication and the meta-analysis data identified four genome-wide significant risk loci for AGA on chromosomes 2q35, 3q25.1, 5q33.3, and 12p12.1. The strongest association signal was obtained for rs7349332 (P=3.55 x 10(-15)) on chr2q35, which is located intronically in WNT10A. Expression studies in human hair follicle tissue suggest that WNT10A has a functional role in AGA etiology. Thus, our study provides genetic evidence supporting an involvement of WNT signaling in AGA development.
Resumo:
Several aspects of sleep behavior such as timing, duration and quality have been demonstrated to be heritable. To identify common variants that influence sleep traits in the population, we conducted a genome-wide association study of six sleep phenotypes assessed by questionnaire in a sample of 2,323 individuals from the Australian Twin Registry. Genotyping was performed on the Illumina 317, 370, and 610K arrays and the SNPs in common between platforms were used to impute non-genotyped SNPs. We tested for association with more than 2,000,000 common polymorphisms across the genome. While no SNPs reached the genome-wide significance threshold, we identified a number of associations in plausible candidate genes. Most notably, a group of SNPs in the third intron of the CACNA1C gene ranked as most significant in the analysis of sleep latency (P = 1.3 x 10(-)(6)). We attempted to replicate this association in an independent sample from the Chronogen Consortium (n = 2,034), but found no evidence of association (P = 0.73). We have identified several other suggestive associations that await replication in an independent sample. We did not replicate the results from previous genome-wide analyses of self-reported sleep phenotypes after correction for multiple testing.
Resumo:
OBJECTIVES To identify common genetic variants that predispose to caffeine-induced insomnia and to test whether genes whose expression changes in the presence of caffeine are enriched for association with caffeine-induced insomnia. DESIGN A hypothesis-free, genome-wide association study. SETTING Community-based sample of Australian twins from the Australian Twin Registry. PARTICIPANTS After removal of individuals who said that they do not drink coffee, a total of 2,402 individuals from 1,470 families in the Australian Twin Registry provided both phenotype and genotype information. MEASUREMENTS AND RESULTS A dichotomized scale based on whether participants reported ever or never experiencing caffeine-induced insomnia. A factor score based on responses to a number of questions regarding normal sleep habits was included as a covariate in the analysis. More than 2 million common single nucleotide polymorphisms (SNPs) were tested for association with caffeine-induced insomnia. No SNPs reached the genome-wide significance threshold. In the analysis that did not include the insomnia factor score as a covariate, the most significant SNP identified was an intronic SNP in the PRIMA1 gene (P = 1.4 x 10(-)(6), odds ratio = 0.68 [0.53 - 0.89]). An intergenic SNP near the GBP4 gene on chromosome 1 was the most significant upon inclusion of the insomnia factor score into the model (P = 1.9 x 10(-)(6), odds ratio = 0.70 [0.62 - 0.78]). A previously identified association with a polymorphism in the ADORA2A gene was replicated. CONCLUSIONS Several genes have been identified in the study as potentially influencing caffeine-induced insomnia. They will require replication in another sample. The results may have implications for understanding the biologic mechanisms underlying insomnia.
Resumo:
There is evidence across several species for genetic control of phenotypic variation of complex traits1, 2, 3, 4, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using ~170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)5, 6, 7, is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of ~0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation9, 10. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
Resumo:
Telomere length (TL) has been associated with aging and mortality, but individual differences are also influenced by genetic factors, with previous studies reporting heritability estimates ranging from 34 to 82%. Here we investigate the heritability, mode of inheritance and the influence of parental age at birth on TL in six large, independent cohort studies with a total of 19 713 participants. The meta-analysis estimate of TL heritability was 0.70 (95% CI 0.64–0.76) and is based on a pattern of results that is highly similar for twins and other family members. We observed a stronger mother–offspring (r=0.42; P-value=3.60 × 10−61) than father–offspring correlation (r=0.33; P-value=7.01 × 10−5), and a significant positive association with paternal age at offspring birth (β=0.005; P-value=7.01 × 10−5). Interestingly, a significant and quite substantial correlation in TL between spouses (r=0.25; P-value=2.82 × 10−30) was seen, which appeared stronger in older spouse pairs (mean age ≥55 years; r=0.31; P-value=4.27 × 10−23) than in younger pairs (mean age<55 years; r=0.20; P-value=3.24 × 10−10). In summary, we find a high and very consistent heritability estimate for TL, evidence for a maternal inheritance component and a positive association with paternal age.
Resumo:
OBJECTIVE To refine a previously reported linkage peak for endometriosis on chromosome 10q26, and conduct follow-up analyses and a fine-mapping association study across the region to identify new candidate genes for endometriosis. DESIGN Case-control study. SETTING Academic research. PATIENT(S) Cases=3,223 women with surgically confirmed endometriosis; controls=1,190 women without endometriosis and 7,060 population samples. INTERVENTION(S) Analysis of 11,984 single nucleotide polymorphisms on chromosome 10. MAIN OUTCOME MEASURE(S) Allele frequency differences between cases and controls. RESULT(S) Linkage analyses on families grouped by endometriosis symptoms (primarily subfertility) provided increased evidence for linkage (logarithm of odds score=3.62) near a previously reported linkage peak. Three independent association signals were found at 96.59 Mb (rs11592737), 105.63 Mb (rs1253130), and 124.25 Mb (rs2250804). Analyses including only samples from linkage families supported the association at all three regions. However, only rs11592737 in the cytochrome P450 subfamily C (CYP2C19) gene was replicated in an independent sample of 2,079 cases and 7,060 population controls. CONCLUSION(S) The role of the CYP2C19 gene in conferring risk for endometriosis warrants further investigation.
Resumo:
Genes in the TGF9 signaling pathway play important roles in the regulation of ovarian follicle growth and ovulation rate. Mutations in three genes in this pathway, growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and the bone morphogenetic protein receptor B 1 (BMPRB1), influence dizygotic (DZ) twinning rates in sheep. To date, only variants in GDF9 and BMP15, but not their receptors transforming growth factor ss receptor 1 (TGFBR1), bone morphogenetic protein receptor 2 (BMPR2) and BMPR1B, have been investigated with respect to their roles in human DZ twinning. We screened for rare and novel variants in TGFBR1, BMPR2 and BMPR1B in mothers of dizygotic twins (MODZT) from twin-dense families, and assessed association between genotyped and imputed variants and DZ twinning in another large sample of MODZT. Three novel variants were found: a deep intronic variant in BMPR2, and one intronic and one non-synonymous exonic variant in BMPRB1 which would result in the replacement of glutamine by glutamic acid at amino acid position 294 (p.Gln294Glu). None of these variants were predicted to have major impacts on gene function. However, the p.Gln294Glu variant changes the same amino acid as a sheep BMPR1B functional variant and may have functional consequences. Six BMPR1B variants were marginally associated with DZ twinning in the larger case-control sample, but these were no longer significant once multiple testing was taken into account. Our results suggest that variation in the TGF9 signaling pathway type II receptors has limited effects on DZ twinning rates in humans.
Resumo:
BACKGROUND Given moderately strong genetic contributions to variation in alcoholism and heaviness of drinking (50% to 60% heritability) with high correlation of genetic influences, we have conducted a quantitative trait genome-wide association study (GWAS) for phenotypes related to alcohol use and dependence. METHODS Diagnostic interview and blood/buccal samples were obtained from sibships ascertained through the Australian Twin Registry. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed with 8754 individuals (2062 alcohol-dependent cases) selected for informativeness for alcohol use disorder and associated quantitative traits. Family-based association tests were performed for alcohol dependence, dependence factor score, and heaviness of drinking factor score, with confirmatory case-population control comparisons using an unassessed population control series of 3393 Australians with genome-wide SNP data. RESULTS No findings reached genome-wide significance (p = 8.4 x 10(-8) for this study), with lowest p value for primary phenotypes of 1.2 x 10(-7). Convergent findings for quantitative consumption and diagnostic and quantitative dependence measures suggest possible roles for a transmembrane protein gene (TMEM108) and for ANKS1A. The major finding, however, was small effect sizes estimated for individual SNPs, suggesting that hundreds of genetic variants make modest contributions (1/4% of variance or less) to alcohol dependence risk. CONCLUSIONS We conclude that: - 1) meta-analyses of consumption data may contribute usefully to gene discovery; - 2) translation of human alcoholism GWAS results to drug discovery or clinically useful prediction of risk will be challenging, and; - 3) through accumulation across studies, GWAS data may become valuable for improved genetic risk differentiation in research in biological psychiatry (e.g., prospective high-risk or resilience studies).
Resumo:
Serum butyrylcholinesterase (BCHE) activity is associated with obesity, blood pressure and biomarkers of cardiovascular and diabetes risk. We have conducted a genome-wide association scan to discover genetic variants affecting BCHE activity, and to clarify whether the associations between BCHE activity and cardiometabolic risk factors are caused by variation in BCHE or whether BCHE variation is secondary to the metabolic abnormalities. We measured serum BCHE in adolescents and adults from three cohorts of Australian twin and family studies. The genotypes from approximately 2.4 million single-nucleotide polymorphisms (SNPs) were available in 8791 participants with BCHE measurements. We detected significant associations with BCHE activity at three independent groups of SNPs at the BCHE locus (P = 5.8 x 10(-262), 7.8 x 10(-47), 2.9 x 10(-12)) and at four other loci: RNPEP (P = 9.4 x 10(-16)), RAPH1-ABI2 (P = 4.1 x 10(-18)), UGT1A1 (P = 4.0 x 10(-8)) and an intergenic region on chromosome 8 (P = 1.4 x 10(-8)). These loci affecting BCHE activity were not associated with metabolic risk factors. On the other hand, SNPs in genes previously associated with metabolic risk had effects on BCHE activity more often than can be explained by chance. In particular, SNPs within FTO and GCKR were associated with BCHE activity, but their effects were partly mediated by body mass index and triglycerides, respectively. We conclude that variation in BCHE activity is due to multiple variants across the spectrum from uncommon/large effect to common/small effect, and partly results from (rather than causes) metabolic abnormalities.
Resumo:
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Resumo:
Abnormal expansion or depletion of particular lymphocyte subsets is associated with clinical manifestations such as HIV progression to AIDS and autoimmune disease. We sought to identify genetic predictors of lymphocyte levels and reasoned that these may play a role in immune-related diseases. We tested 2.3 million variants for association with five lymphocyte subsets, measured in 2538 individuals from the general population, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells, and the derived measure CD4:CD8 ratio. We identified two regions of strong association. The first was located in the major histocompatibility complex (MHC), with multiple SNPs strongly associated with CD4:CD8 ratio (rs2524054, p = 2.1 × 10−28). The second region was centered within a cluster of genes from the Schlafen family and was associated with NK cell levels (rs1838149, p = 6.1 × 10−14). The MHC association with CD4:CD8 replicated convincingly (p = 1.4 × 10−9) in an independent panel of 988 individuals. Conditional analyses indicate that there are two major independent quantitative trait loci (QTL) in the MHC region that regulate CD4:CD8 ratio: one is located in the class I cluster and influences CD8 levels, whereas the second is located in the class II cluster and regulates CD4 levels. Jointly, both QTL explained 8% of the variance in CD4:CD8 ratio. The class I variants are also strongly associated with durable host control of HIV, and class II variants are associated with type-1 diabetes, suggesting that genetic variation at the MHC may predispose one to immune-related diseases partly through disregulation of T cell homeostasis.
Resumo:
CONTEXT People meeting diagnostic criteria for anxiety or depressive disorders tend to score high on the personality scale of neuroticism. Studying this personality dimension can give insights into the etiology of these important psychiatric disorders. OBJECTIVES To undertake a comprehensive genome-wide linkage study of neuroticism using large study samples that have been measured multiple times and to compare the results between countries for replication and across time within countries for consistency. DESIGN Genome-wide linkage scan. SETTING Twin individuals and their family members from Australia and the Netherlands. PARTICIPANTS Nineteen thousand six hundred thirty-five sibling pairs completed self-report questionnaires for neuroticism up to 5 times over a period of up to 22 years. Five thousand sixty-nine sibling pairs were genotyped with microsatellite markers. METHODS Nonparametric linkage analyses were conducted in MERLIN-REGRESS for the mean neuroticism scores averaged across time. Additional analyses were conducted for the time-specific measures of neuroticism from each country to investigate consistency of linkage results. RESULTS Three chromosomal regions exceeded empirically derived thresholds for suggestive linkage using mean neuroticism scores: 10p 5 Kosambi cM (cM) (Dutch study sample), 14q 103 cM (Dutch study sample), and 18q 117 cM (combined Australian and Dutch study sample), but only 14q retained significance after correction for multiple testing. These regions all showed evidence for linkage in individual time-specific measures of neuroticism and 1 (18q) showed some evidence for replication between countries. Linkage intervals for these regions all overlap with regions identified in other studies of neuroticism or related traits and/or in studies of anxiety in mice. CONCLUSIONS Our results demonstrate the value of the availability of multiple measures over time and add to the optimism reported in recent reviews for replication of linkage regions for neuroticism. These regions are likely to harbor causal variants for neuroticism and its related psychiatric disorders and can inform prioritization of results from genome-wide association studies.
Resumo:
Most information in linkage analysis for quantitative traits comes from pairs of relatives that are phenotypically most discordant or concordant. Confounding this, within-family outliers from non-genetic causes may create false positives and negatives. We investigated the influence of within-family outliers empirically, using one of the largest genome-wide linkage scans for height. The subjects were drawn from Australian twin cohorts consisting of 8447 individuals in 2861 families, providing a total of 5815 possible pairs of siblings in sibships. A variance component linkage analysis was performed, either including or excluding the within-family outliers. Using the entire dataset, the largest LOD scores were on chromosome 15q (LOD 2.3) and 11q (1.5). Excluding within-family outliers increased the LOD score for most regions, but the LOD score on chromosome 15 decreased from 2.3 to 1.2, suggesting that the outliers may create false negatives and false positives, although rare alleles of large effect may also be an explanation. Several regions suggestive of linkage to height were found after removing the outliers, including 1q23.1 (2.0), 3q22.1 (1.9) and 5q32 (2.3). We conclude that the investigation of the effect of within-family outliers, which is usually neglected, should be a standard quality control measure in linkage analysis for complex traits and may reduce the noise for the search of common variants of modest effect size as well as help identify rare variants of large effect and clinical significance. We suggest that the effect of within-family outliers deserves further investigation via theoretical and simulation studies.