226 resultados para Neural Signal
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
As the key neuron-to-neuron interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. However, the signal transduction mechanisms by which stress mediates its lasting effects on synapse transmission and on memory are not fully understood. A key component of the stress response is the increased secretion of adrenal steroids. Adrenal steroids (e.g., cortisol) bind to genomic mineralocorticoid and glucocorticoid receptors (gMRs and gGRs) in the cytosol. In addition, they may act through membrane receptors (mMRs and mGRs), and signal transduction through these receptors may allow for rapid modulation of synaptic transmission as well as modulation of membrane ion currents. mMRs increase synaptic and neuronal excitability; mechanisms include the facilitation of glutamate release through extracellular signal-regulated kinase signal transduction. In contrast, mGRs decrease synaptic and neuronal excitability by reducing calcium currents through N-methyl-D-aspartate receptors and voltage-gated calcium channels by way of protein kinase A- and G protein-dependent mechanisms. This body of functional data complements anatomical evidence localizing GRs to the postsynaptic membrane. Finally, accumulating data also suggest the possibility that mMRs and mGRs may show an inverted U-shaped dose response, whereby glutamatergic synaptic transmission is increased by low doses of corticosterone acting at mMRs and decreased by higher doses acting at mGRs. Thus, synaptic transmission is regulated by mMRs and mGRs, and part of the stress signaling response is a direct and bidirectional modulation of the synapse itself by adrenal steroids.
Resumo:
We present an overview of the QUT plant classification system submitted to LifeCLEF 2014. This system uses generic features extracted from a convolutional neural network previously used to perform general object classification. We examine the effectiveness of these features to perform plant classification when used in combination with an extremely randomised forest. Using this system, with minimal tuning, we obtained relatively good results with a score of 0:249 on the test set of LifeCLEF 2014.
Resumo:
Available industrial energy meters offer high accuracy and reliability, but are typically expensive and low-bandwidth, making them poorly suited to multi-sensor data acquisition schemes and power quality analysis. An alternative measurement system is proposed in this paper that is highly modular, extensible and compact. To minimise cost, the device makes use of planar coreless PCB transformers to provide galvanic isolation for both power and data. Samples from multiple acquisition devices may be concentrated by a central processor before integration with existing host control systems. This paper focusses on the practical design and implementation of planar coreless PCB transformers to facilitate the module's isolated power, clock and data signal transfer. Calculations necessary to design coreless PCB transformers, and circuits designed for the transformer's practical application in the measurement module are presented. The designed transformer and each application circuit have been experimentally verified, with test data and conclusions made applicable to coreless PCB transformers in general.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
Despite moral prohibitions on hurting other humans, some social contexts allow for harmful actions such as the killing of others. One example is warfare, where killing enemy soldiers is seen as morally justified. Yet, the neural underpinnings distinguishing between justified and unjustified killing are largely unknown. To improve understanding of the neural processes involved in justified and unjustified killing, participants had to imagine being the perpetrator whilst watching “first-person perspective” animated videos where they shot enemy soldiers (‘justified violence’) and innocent civilians (‘unjustified violence’). When participants imagined themselves shooting civilians compared to soldiers, greater activation was found in the lateral orbitofrontal cortex (OFC). Regression analysis revealed that the more guilt participants felt about shooting civilians, the greater the response in the lateral OFC. Effective connectivity analyses further revealed an increased coupling between lateral OFC and the tempoparietal junction (TPJ) when shooting civilians. The results show that the neural mechanisms typically implicated with harming others, such as the OFC, become less active when the violence against a particular group is seen as justified. This study therefore provides unique insight into how normal individuals can become aggressors in specific situations.
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Resumo:
It is traditional to initialise Kalman filters and extended Kalman filters with estimates of the states calculated directly from the observed (raw) noisy inputs, but unfortunately their performance is extremely sensitive to state initialisation accuracy: good initial state estimates ensure fast convergence whereas poor estimates may give rise to slow convergence or even filter divergence. Divergence is generally due to excessive observation noise and leads to error magnitudes that quickly become unbounded (R.J. Fitzgerald, 1971). When a filter diverges, it must be re initialised but because the observations are extremely poor, re initialised states will have poor estimates. The paper proposes that if neurofuzzy estimators produce more accurate state estimates than those calculated from the observed noisy inputs (using the known state model), then neurofuzzy estimates can be used to initialise the states of Kalman and extended Kalman filters. Filters whose states have been initialised with neurofuzzy estimates should give improved performance by way of faster convergence when the filter is initialised, and when a filter is re started after divergence
Resumo:
Advances in neural network language models have demonstrated that these models can effectively learn representations of words meaning. In this paper, we explore a variation of neural language models that can learn on concepts taken from structured ontologies and extracted from free-text, rather than directly from terms in free-text. This model is employed for the task of measuring semantic similarity between medical concepts, a task that is central to a number of techniques in medical informatics and information retrieval. The model is built with two medical corpora (journal abstracts and patient records) and empirically validated on two ground-truth datasets of human-judged concept pairs assessed by medical professionals. Empirically, our approach correlates closely with expert human assessors ($\approx$ 0.9) and outperforms a number of state-of-the-art benchmarks for medical semantic similarity. The demonstrated superiority of this model for providing an effective semantic similarity measure is promising in that this may translate into effectiveness gains for techniques in medical information retrieval and medical informatics (e.g., query expansion and literature-based discovery).
Resumo:
Neural interface devices and the melding of mind and machine, challenge the law in determining where civil liability for injury, damage or loss should lie. The ability of the human mind to instruct and control these devices means that in a negligence action against a person with a neural interface device, determining the standard of care owed by him or her will be of paramount importance. This article considers some of the factors that may influence the court’s determination of the appropriate standard of care to be applied in this situation, leading to the conclusion that a new standard of care might evolve.
A LIN inspired optical bus for signal isolation in multilevel or modular power electronic converters
Resumo:
Proposed in this paper is a low-cost, half-duplex optical communication bus for control signal isolation in modular or multilevel power electronic converters. The concept is inspired by the Local Interconnect Network (LIN) serial network protocol as used in the automotive industry. The proposed communications bus utilises readily available optical transceivers and is suitable for use with low-cost microcontrollers for distributed control of multilevel converters. As a signal isolation concept, the proposed optical bus enables very high cell count modular multilevel cascaded converters (MMCCs) for high-bandwidth, high-voltage and high-power applications. Prototype hardware is developed and the optical bus concept is validated experimentally in a 33-level MMCC converter operating at 120 Vrms and 60 Hz.
Resumo:
What helps us determine whether a word is a noun or a verb, without conscious awareness? We report on cues in the way individual English words are spelled, and, for the first time, identify their neural correlates via functional magnetic resonance imaging (fMRI). We used a lexical decision task with trisyllabic nouns and verbs containing orthographic cues that are either consistent or inconsistent with the spelling patterns of words from that grammatical category. Significant linear increases in response times and error rates were observed as orthography became less consistent, paralleled by significant linear decreases in blood oxygen level dependent (BOLD) signal in the left supramarginal gyrus of the left inferior parietal lobule, a brain region implicated in visual word recognition. A similar pattern was observed in the left superior parietal lobule. These findings align with an emergentist view of grammatical category processing which results from sensitivity to multiple probabilistic cues.
Resumo:
We investigated the neural correlates of semantic priming by using event-related fMRI to record blood oxygen level dependent (BOLD) responses while participants performed speeded lexical decisions (word/nonword) on visually presented related versus unrelated prime-target pairs. A long stimulus onset asynchrony of 1000 ms was employed, which allowed for increased controlled processing and selective frequency-based ambiguity priming. Conditions included an ambiguous word prime (e.g. bank) and a target related to its dominant (e.g. money) or subordinate meaning (e.g. river). Compared to an unrelated condition, primed dominant targets were associated with increased activity in the LIFG, the right anterior cingulate and superior temporal gyrus, suggesting postlexical semantic integrative mechanisms, while increased right supramarginal activity for the unrelated condition was consistent with expectancy based priming. Subordinate targets were not primed and were associated with reduced activity primarily in occipitotemporal regions associated with word recognition, which may be consistent with frequency-based meaning suppression. These findings provide new insights into the neural substrates of semantic priming and the functional-anatomic correlates of lexical ambiguity suppression mechanisms.