247 resultados para Microscopy of materials


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The regeneration of periodontal tissues to cure periodontitis remains a medical challenge. Therefore, it is of great importance to develop a novel biomaterial that could induce cementogenesis and osteogenesis in periodontal tissue engineering. Calcium silicate (Ca–Si) based ceramics have been found to be potential bioactive materials due to their osteostimulatory effect. Recently, it is reported that zirconium modified calcium-silicate-based (Ca3ZrSi2O9) ceramics stimulate cell proliferation and osteogenic differentiation of osteoblasts. However, it is unknown whether Ca3ZrSi2O9 ceramics possess specific cementogenic stimulation for human periodontal ligament cells (hPDLCs) in periodontal tissue regeneration in vitro. The purpose of this study was to investigate whether Ca3ZrSi2O9 ceramic disks and their ionic extracts could stimulate cell growth and cementogenic/osteogenic differentiation of hPDLCs; the possible molecular mechanism involved in this process was also explored by investigating the Wnt/β-catenin signalling pathway of hPDLCs. Our results showed that Ca3ZrSi2O9 ceramic disks supported cell adhesion, proliferation and significantly up-regulated relative alkaline phosphatase (ALP) activity, cementogenic/osteogenic gene expression (CEMP1, CAP, ALP and OPN) and Wnt/β-catenin signalling pathway-related genes (AXIN2 and CTNNB) for hPDLCs, compared to that of β-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic extracts from Ca3ZrSi2O9 powders also significantly enhanced relative ALP activity, cementogenic/osteogenic and Wnt/β-catenin-related gene expression of hPDLCs. The present results demonstrate that Ca3ZrSi2O9 ceramics are capable of stimulating cementogenic/osteogenic differentiation of hPDLCs possibly via activation of the Wnt/β-catenin signalling pathway, suggesting that Ca3ZrSi2O9 ceramics have the potential to be used for periodontal tissue regeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates the potential of pulsed power to sterilize hard and soft tissues and its impact on their physico-mechanical properties. It hypothesizes that pulsed plasma can sterilize both vascular and avascular tissues and the transitive layers in between without deleterious effects on their functional characteristics. Cartilage/bone laminate was chosen as a model to demonstrate the concept, treated at low temperature, at atmospheric pressure, in short durations and in buffered environment using a purposed-built pulsed power unit. Input voltage and time of exposure were assigned as controlling parameters in a full factorial design of experiment to determine physical and mechanical alteration pre- and post-treatment. The results demonstrated that, discharges of 11 kV sterilized samples in 45 s, reducing intrinsic elastic modules from 1.4 ± 0.9 to 0.9 ± 0.6 MPa. There was a decrease of 14.1 % in stiffness and 27.8 % in elastic-strain energy for the top quartile. Mechanical impairment was directly proportional to input voltage (P value < 0.05). Bacterial inactivation was proportional to treatment time for input voltages above 32 V (P < 0.001; R Sq = 0.98). Thermal analysis revealed that helix-coil transition decelerated with exposure time and collagen fibrils were destabilized as denaturation enthalpy reduced by 200 μV. We concluded by presenting a safe operating threshold for pulsed power plasma as a feasible protocol for effective sterilization of connective tissues with varying level of loss in mechanical robustness which we argue to be acceptable in certain medical and tissue engineering application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mesoporous titania microspheres composed of nanosheets with exposed active facets were prepared by hydrothermal synthesis in the presence of hexafluorosilicic acid. They exhibited superior catalytic activity in the solvent-free synthesis of azoxybenzene by oxidation of aniline and could be used for 7 cycles with slight loss of activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose of review: Artificial corneas are being developed to meet a shortage of donor corneas as well as to address cases where allografting is contraindicated. A range of artificial corneas has been developed. Here we review several newer designs and especially those inspired by naturally occurring biomaterials found with the human body and elsewhere. Recent findings: Recent trends in the development of artificial corneas indicate a move towards the use of materials derived from native sources including decellularized corneal tissue and tissue substitutes synthesized by corneal cells in vitro when grown either on their own, or in conjunction with novel protein-based scaffolds. Biologically inspired materials are also being considered for implantation on their own with the view to promoting endogenous corneal tissue. Summary: More recent attempts at making artificial corneas have taken a more nature-based or nature-inspired approach. Several will in the near future be likely to be available clinically.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This project advances the knowledge of rail wear and crack formation due to rail/wheel contact in Australian heavy-haul railway lines. This comprehensive study utilised numerous techniques including: simulation using a twin-disk test-rig, scanning electron microscope particle analysis and finite element modeling for material failure prediction. Through this work, new material failure models have been developed which may be used to predict the lifetime and reliability of materials undergoing severe contact conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemically synthesized AgTCNQ exists in two forms that differ in their morphologies (needles and microcrystals) and colors (red and blue). It is now shown that both forms exhibit essentially indistinguishable X-ray diffraction, spectroscopic, and thermochemical data, implying that they are not separate phases, as implied in some literature. Electrochemical reduction of TCNQ((MeCN)) in the presence of Ag+((MeCN)) generates both red and blue AgTCNQ. On glassy carbon, platinum, or indium tin oxide electrodes and at relatively positive deposition potentials, slow growth of high aspect ratio, red needle AgTCNQ crystals occurs. After longer times and at more negative deposition potentials, blue microcrystalline AgTCNQ thin films are favored. Blue AgTCNQ is postulated to be generated via reduction of a Ag+\[(TCNQ(center dot-))(TCNQ)]((MeCN)) intermediate. At even more negative potentials, Ag-(metal) formation inhibits further growth of AgTCNQ. On a gold electrode, Ag-(metal)) deposition occurs at more positive potentials than on the other electrode materials examined. However, surface plasmon resonance data indicate (hat a small potential region is available between the stripping of Ag-(metal)) and the oxidation of TCNQ(center dot-)(MeCN) back to TCNQ(MeCN) where AgTCNQ may form. AgTCNQ in both the red and blue forms also can be prepared electrochemically on a TCNQ((s)) modified electrode in -0.1 M AgNO3(aq) where deposition of Ag(m,,,I) onto the TCNQ((s)) crystals allows a charge transfer process to occur. However, the morphology formed in this solid-solid phase transformation is more difficult to control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The safe working lifetime of a structure in a corrosive or other harsh environment is frequently not limited by the material itself but rather by the integrity of the coating material. Advanced surface coatings are usually crosslinked organic polymers such as epoxies and polyurethanes which must not shrink, crack or degrade when exposed to environmental extremes. While standard test methods for environmental durability of coatings have been devised, the tests are structured more towards determining the end of life rather than in anticipation of degradation. We have been developing prognostic tools to anticipate coating failure by using a fundamental understanding of their degradation behaviour which, depending on the polymer structure, is mediated through hydrolytic or oxidation processes. Fourier transform infrared spectroscopy (FTIR) is a widely-used laboratory technique for the analysis of polymer degradation and with the development of portable FTIR spectrometers, new opportunities have arisen to measure polymer degradation non-destructively in the field. For IR reflectance sampling, both diffuse (scattered) and specular (direct) reflections can occur. The complexity in these spectra has provided interesting opportunities to study surface chemical and physical changes during paint curing, service abrasion and weathering, but has often required the use of advanced statistical analysis methods such as chemometrics to discern these changes. Results from our studies using this and related techniques and the technical challenges that have arisen will be presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the lower strength of pure copper (Cu), ceramic particulate or whisker reinforced Cu matrix composites have attracted wide interest in recent years [1–3]. These materials exhibit a combination of excellent thermal and electrical conductivities, high strength retention at elevated temperatures, and high microstructural stability [3]. The potential applications include various electrodes, electrical switches, and X-ray tube components [4].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A nonlinear finite element analysis was carried out to investigate the viscoplastic deformation of solder joints in a ball grid array (BGA) package under temperature cycle. The effects of constraint on print circuit board (PCB) and stiffness of substrate on the deformation behaviour of the solder joints were also studied. A relative damage stress was adopted to analyze the potential failure sites in the solder joints. The results indicated that high inelastic strain and strain energy density were developed in the joints close to the package center. On the other hand, high constraint and high relative damage stress were associated with the joint closest to the edge of the silicon chip. The joint closest to the edge of the silicon chip was regarded as the most susceptible failure site if cavitation instability is the dominant failure mechanism. Increase the external constraint on the print circuit board (PCB) causes a slight increase in stress triaxiality (m/eq) and relative damage stress in the joint closest to the edge of silicon die. The relative damage stress is not sensitive to the Young’s modulus of the substrate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates the teaching and learning of fractions to Indigenous adult learners in a Civil Construction Certificate Course. More specifically it explores why the use of materials is critical to building knowledge and understanding. This focus is important for two reasons. First, it allows for considerations of a trainer’s approach for teaching fractions and, second it provides insights into how adult learners can be supported with representing their practical experiences of fractions to make generalisation thus building on their knowledge and learning experiences. The paper draws on teaching episodes from an Australian Research Council funded Linkage project that investigates how mathematics is taught and learned in Certificate Courses, here, Certificate 11 in Civil Construction. Action research and decolonising methods (Smith, 1999) were used to conduct the research. Video excerpts which feature one trainer and three students are analysed and described. Findings from the data indicate that adult learners need to be supported with materials to assist with building their capacity to know and apply understandings of fractions in a range of contexts, besides construction. Without materials and where fractions are taught via pen and paper tasks, students are less likely to retain and apply fraction ideas to their Certificate Course. Further they are less likely to understand decimals because of limited understanding of fractions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High quality, micron-sized interpenetrating grains of MgB2 with high density are produced at low temperatures (~420oC < T < ~500oC) under autogenous pressure by pre-mixing Mg powder and NaBH4 and heating in an Inconel 601 alloy reactor for 5−15 hours. Optimum production of MgB2 with yields greater than 75% occurs for autogenous pressure in the range 1.0 MPa to 2.0 MPa with the reactor at ~500oC. Autogenous pressure is induced by the decomposition of NaBH4 in the presence of Mg and/or other Mg-based compounds. The morphology, transition temperature and magnetic properties of MgB2 are dependent on the heating regime. Significant improvement in physical properties accrues when the reactor temperature is held at 250oC for >20minutes prior to a hold at 500oC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon nanoflakes (CNFLs) are synthesized on silicon substrates deposited with carbon islands in a methane environment using hot filament chemical vapor deposition. The structure and composition of the CNFLs are studied using field emission scanning electron microscopy, high-resolution transmission electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicate that the CNFLs are composed of multilayer graphitic sheets and the area and thickness of CNFs increase with the growth time. The photoluminescence (PL) of CNFLs excited by a 325 nm He-Cd laser exhibits three strong bands centered at 408, 526, and 699 nm, which are related to the chemical radicals terminated on the CNFLs and the associated interband transitions. The PL results indicate that the CNFLs are promising as an advanced nano-carbon material capable of generating white light emission. These outcomes are significant to control the electronic structure of CNFLs and contribute to the development of next-generation solid-state white light emission devices. © 2014 the Partner Organisations.