341 resultados para Light-dependent
Resumo:
Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.
Resumo:
Light gauge steel roofing systems made of thin profiled roof sheeting and battens are used commonly in residential, industrial and commercial buildings. Their critical design load combination is that due to wind uplift forces that occur during high wind events such as tropical cyclones and thunderstorms. However, premature local failures at their screw connections have been a concern for many decades since cyclone Tracy that devastated Darwin in 1974. Extensive research that followed cyclone Tracy on the pull-through and pull-out failures of roof sheeting to batten connections has significantly improved the safety of roof sheeting. However, this has made the batten to rafter/truss connection the weakest, and recent wind damage investigations have shown the failures of these connections and the resulting loss of entire roof structures. Therefore an experimental research program using both small scale and full scale air-box tests is currently under way to investigate the pull-through failures of thin-walled steel battens under high wind uplift forces. Tests have demonstrated that occurrence of pull-through failures in the bottom flanges of steel batttens and the need to develop simple test and design methods as a function of many critical parameters such as steel batten geometry, thickness and grade, screw fastener sizes and other fastening details. This paper presents the details of local failures that occur in light fauge roofing systems, a review of the current design and test methods for steel battens and associated short comings, and the test results obtained to date on pull-through failures of battens from small scale and full scale tests. Finally, it proposes the use of suitable small scale test methods that can be used by both researchers and manufacturers of such screw-fastened light gauge steel batten systems.
Resumo:
Epidermal growth factor receptor (EGFR) levels predict a poor outcome in human breast cancer and are most commonly associated with proliferative effects of epidermal growth factor (EGF), with little emphasis placed on motogenic responses to EGF. We found that MDA-MB-231 human breast cancer cells elicited a potent chemotactic response despite their complete lack of a proliferative response to EGF. Antagonists of EGFR ligation, the EGFR kinase, phosphatidylinositol 3'-kinase, and phospholipase C, but not the mitogen- activated protein kinases (extracellular signal-regulated protein kinase 1 and 2), blocked MDA-MB-231 chemotaxis. These findings suggest that EGF may influence human breast cancer progression via migratory pathways, the signaling for which appears to be dissociated, at least in part, from the proliferative pathways.
Resumo:
Hindered amine light stabilisers (HALS) are the most effective antioxidants currently available for polymer systems in post-production, in-service applications, yet the mechanism of their action is still not fully understood. Structural characterisation of HALS in polymer matrices, particularly the identification of structural modifications brought about by oxidative conditions, is critical to aid mechanistic understanding of the prophylactic effects of these molecules. In this work, electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was applied to the analysis of a suite of commercially available 2,2,6,6-tetramethylpiperidine-based HALS. Fragmentation mechanisms for the \[M + H](+) ions are proposed, which provide a rationale for the product ions observed in the MS/MS and MS(3) mass spectra of N-H, N-CH(3), N-C(O)CH(3) and N-OR containing HALS (where R is an alkyl substituent). A common product ion at m/z 123 was identified for the group of antioxidants containing N-H, N-CH3 or N-C(0)CH3 functionality, and this product ion was employed in precursor ion scans on a triple quadrupole mass spectrometer to identify the HALS species present in a crude extract from of a polyester-based coil coating. Using MS/MS, two degradation products were unambiguously identified. This technique provides a simple and selective approach to monitoring HALS structures within complex matrices. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The rat nucleus accumbens contains medium-sized, spiny projection neurons and intrinsic, local circuit neurons, or interneurons. Sub-classes of interneurons, revealed by calretinin (CR) or parvalbumin (PV) immunoreactivity or reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, were compared in the nucleus accumbens core, shell and rostral pole. CR, PV and NADPH-diaphorase-containing neurons are shown to form three non-co-localising populations in these three areas. No significant differences in neuronal population densities were found between the subterritories. NADPH-diaphorase-containing neurons could be further separated morphologically into three sub-groups, but CR- and PV-immunoreactive neurons form homogeneous populations. Ultrastructurally, NADPH-diaphorase-, CR- and PV-containing neurons in the nucleus accumbens all possess nuclear indentations. These are deeper and fewer in neurons immunoreactive for PV than in CR- and NADPH-diaphorase-containing neurons. CR-immunoreactive boutons form asymmetrical and symmetrical synaptic specialisations on spines, dendrites and somata, while PV-immunoreactive boutons make only symmetrical synaptic specialisations. Both CR- and PV-immunoreactive boutons form symmetrical synaptic specialisations with medium-sized spiny neurons and contact other CR- and PV-immunoreactive somata, respectively. A novel non-carcinogenic substrate for the peroxidase reaction (Vector Slate Grey, SG) was found to be characteristically electron-dense and may be distinguishable from the diaminobenzidine reaction product. We conclude that the three markers used in this study are localised in distinct populations of nucleus accumbens interneurons. Our studies of their synaptic connections contribute to an increased understanding of the intrinsic circuitry of this area.
Resumo:
Human skin fibroblasts were cultured long-term in the presence of ascorbic acid to allow formation of a three-dimensional collagen matrix, and the effects of this on activation of secreted matrix metalloproteinase-2 (MMP-2) were examined. Accumulation of collagen over time correlated with increased levels of both mature MMP-2 and cell-associated membrane type 1-MMP (MT1-MMP), and subsequently increased mRNA levels for MT1-MMP, providing temporal resolution of the "nontranscriptional" and "transcriptional" effects of collagen on MT-1MMP functionality. MMP-2 activation by these cultures was blocked by inhibitors of prolyl-4-hydroxylase, or when fibroblasts derived from the collagen α1(I) gene-deficient Mov-13 mouse were used. MMP-2 activation by the Mov-13 fibroblasts was rescued by transfection of a full-length α1(I) collagen cDNA, and to our surprise, also by transfection with an α1(I) collagen cDNA carrying a mutation at the C-proteinase cleavage, which almost abrogated fibrillogenesis. Although studies with ascorbate-cultured MT1-MMP-/- fibroblasts showed that MT1-MMP played a significant role in the collagen-induced MMP-2 activation, a residual MT1-MMP-independent activation of MMP-2 was seen which resembled the level of MMP-2 activation persisting when wild-type fibroblasts were cultured in the presence of both ascorbic acid and MMP inhibitors. We were also unable to block this residual activation with inhibitors specific for serinyl, aspartyl, or cysteinyl enzymes.
Resumo:
A multimodal trip planner that produces optimal journeys involving both public transport and private vehicle legs has to solve a number of shortest path problems, both on the road network and the public transport network. The algorithms that are used to solve these shortest path problems have been researched since the late 1950s. However, in order to provide accurate journey plans that can be trusted by the user, the variability of travel times caused by traffic congestion must be taken into consideration. This requires the use of more sophisticated time-dependent shortest path algorithms, which have only been researched in depth over the last two decades, from the mid-1990s. This paper will review and compare nine algorithms that have been proposed in the literature, discussing the advantages and disadvantages of each algorithm on the basis of five important criteria that must be considered when choosing one or more of them to implement in a multimodal trip planner.
Resumo:
Human alterations to nutrient cycles1, 2 and herbivore communities3, 4, 5, 6, 7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8, 9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Resumo:
BACKGROUND Androgen-dependent prostate cancer (PrCa) xenograft models are required to study PrCa biology in the clinically relevant in vivo environment. METHODS Human PrCa tissue from a femoral bone metastasis biopsy (BM18) was grown and passaged subcutaneously through male severe combined immune-deficient (SCID) mice. Human mitochondria (hMt), prostate specific antigen (PSA), androgen receptor (AR), cytokeratin-18 (CK-18), pan-cytokeratin, and high molecular weight-cytokeratin (HMW-CK) were assessed using immunohistochemistry (IHC). Surgical castration was performed to examine androgen dependence. Serum was collected pre- and post-castration for monitoring of PSA levels. RESULTS: BM18 stained positively for hMt, PSA, AR, CK-18, pan keratin, and negatively for HMW-CK, consistent with the staining observed in the original patient material. Androgen-deprivation induced tumor regression in 10/10 castrated male SCID mice. Serum PSA levels positively correlated with BM18 tumor size. CONCLUSIONS BM18 expresses PSA and AR, and rapidly regresses in response to androgen withdrawal. This provides a new clinically significant PrCa model for the study of androgen-dependent growth.
Resumo:
We have isolated a series of sublines of the hormone-dependent MCF-7 human breast cancer cell line after selection both in vivo and in vitro for growth in the presence of subphysiological concentrations of estrogens. These sublines represent a model system for study of the processes leading to hormonal autonomy. The cells form growing tumors in ovariectomized athymic nude mice in the absence of estrogen supplementation but retain some responsivity to estrogen as determined by stimulation of the rate of tumor growth in vivo and by induction of progesterone receptor. An ovarian-independent but hormone-responsive phenotype may occur early in the natural progression to hormone-independent and unresponsive growth in breast cancer. We observed no change in the affinity or decrease in the level of expression of estrogen receptors and progesterone receptors among the sublines and the parental cells. Epidermal growth factor receptors are not overexpressed in ovarian-independent cells. Thus, altered hormone receptor expression may be a late event in the acquisition of a hormone-independent and unresponsive phenotype. Sublines isolated by in vivo but not in vitro selection are more invasive than the parental cells both in vivo and across an artificial basement membrane in vitro. Thus, as yet unknown tumor-host interactions may be important in the development of an invasive phenotype. Furthermore, acquisition of the ovarian-independent and invasive phenotypes can occur independently.
Resumo:
The advanced era of knowledge-based urban development has led to an unprecedented increase in mobility of people and the subsequent growth in the new typology of agglomerated enclaves of knowledge such as urban knowledge precincts. A new role has been assigned to contemporary public spaces of these precincts to attract and retain the mobile knowledge workforce for long by creating a sense of place for them. This paper sheds light over the place making in the globalised knowledge economy world which develops a sense of permanence spatio-temporally to knowledge workers displaying a set of particular characteristics and simultaneously is process-dependent getting developed by the internal and external flows and contributing substantially in the development of the broader context it stands in relation with. The paper highlights the observations from Australia’s new world city Brisbane to outline the application of urban design as a tool to create and sustain this bipartite place making in urban knowledge precincts, which caters diverse range of social, cultural and democratic needs. It seeks to analyse the modified permeable typology of public spaces that makes it more viable and adaptive as per the changing needs of the contemporary globalised or in other words knowledge society. This research has taken an overall process-based approach reflecting how urban design is an assemblage of the encompassing processes that underlay the resultant place making. It explores how the permeable design typology of these contemporary precincts in Brisbane develops a progressive sense of place that makes them stimulating, effervescent and vibrant.
Resumo:
Carbon nanoflakes (CNFLs) are synthesized on silicon substrates deposited with carbon islands in a methane environment using hot filament chemical vapor deposition. The structure and composition of the CNFLs are studied using field emission scanning electron microscopy, high-resolution transmission electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicate that the CNFLs are composed of multilayer graphitic sheets and the area and thickness of CNFs increase with the growth time. The photoluminescence (PL) of CNFLs excited by a 325 nm He-Cd laser exhibits three strong bands centered at 408, 526, and 699 nm, which are related to the chemical radicals terminated on the CNFLs and the associated interband transitions. The PL results indicate that the CNFLs are promising as an advanced nano-carbon material capable of generating white light emission. These outcomes are significant to control the electronic structure of CNFLs and contribute to the development of next-generation solid-state white light emission devices. © 2014 the Partner Organisations.
Resumo:
The electron field emission (EFE) properties of nitrogenated carbon nanotips (NCNTPs) were studied under high-vacuum conditions. The NCNTPs were prepared in a plasma-assisted hot filament chemical vapor deposition system using CH4 and N2 as the carbon and nitrogen sources, respectively. The work functions of NCNTPs were measured using x-ray photoelectron spectroscopy. The morphological and structural properties of NCNTPs were studied by field emission scanning electron microscopy, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. The field enhancement factors of NCNTPs were calculated using relevant EFE models based on the Fowler-Nordheim approximation. Analytical characterization and modeling results were used to establish the relations between the EFE properties of NCNTPs and their morphology, structure, and composition. It is shown that the EFE properties of NCNTPs can be enhanced by the reduction of oxygen termination on the surface as well as by increasing the ratio of the NCNTP height to the radius of curvature at its top. These results also suggest that a significant amount of electrons is emitted from other surface areas besides the NCNTP tops, contrary to the common belief. The outcomes of this study advance our knowledge on the electron emission properties of carbonnanomaterials and contribute to the development of the next-generation of advanced applications in the fields of micro- and opto-electronics.
Resumo:
The highly unusual structural and electronic properties of the α-phase of (Si1-xCx)3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si 1-xCx)3N4 are found to be very close to those of α-C3N4. The bandgap of α-(Si 1-xCx)3N4 significantly decreases as C atoms are substituted by Si atoms (in most cases, smaller than that of either α-Si3N4 or α-C3N4) and attains a minimum when the ratio of C to Si is close to 2. On the other hand, the bulk modulus of α-(Si1-xCx)3N 4 is found to be closer to that of α-Si3N 4 than of α-C3N4. Plasma-assisted synthesis experiments of CNx and SiCN films are performed to verify the accuracy of the DFT calculations. TEM measurements confirm the calculated lattice constants, and FT-IR/XPS analysis confirms the formation and lengths of C-N and Si-N bonds. The results of DFT calculations are also in a remarkable agreement with the experiments of other authors.
Resumo:
Silicon thin films were synthesized simultaneously on single-crystal silicon and glass substrates by lowpressure, thermally nonequilibrium, high-density inductively coupled plasma-assisted chemical vapor deposition from the silane precursor gas without any additional hydrogen dilution in a broad range of substrate temperatures from 100 to 500 °C. The effect of the substrate temperature on the morphological, structural and optical properties of the synthesized silicon thin films is systematically studied by X-ray diffractometry, Raman spectroscopy, UV-vis spectroscopy, and scanning electron microscopy. It is shown that the formation of nanocrystalline silicon (nc-Si) occurs when the substrate temperature is higher than 200 °C and that all the deposited nc-Si films have a preferential growth along the (111) direction. However, the mean grain size of the (111) orientation slightly and gradually decreases while the mean grain size of the (220) orientation shows a monotonous increase with the increased substrate temperature from 200 to 500 °C. It is also found that the crystal volume fraction of the synthesized nc-Si thin films has a maximum value of ∼69.1% at a substrate temperature of 300 rather than 500 °C. This rather unexpected result is interpreted through the interplay of thermokinetic surface diffusion and hydrogen termination effects. Furthermore, we have also shown that with the increased substrate temperature from 100 to 500 °C, the optical bandgap is reduced while the growth rates tend to increase. The maximum rates of change of the optical bandgap and the growth rates occur when the substrate temperature is increased from 400 to 500 °C. These results are highly relevant to the development of photovoltaic thin-film solar cells, thin-film transistors, and flat-panel displays.