441 resultados para Investigative tasks


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis consists of a novel written with the express purpose of exploring what practices and strategies are most useful in writing novel-length fiction as well as an exegesis which discusses the process. By its very nature, an undergraduate degree in Creative Writing is broad and general in approach. The Creative Writing undergraduate is being trained to manage many and varying writing tasks but none of them larger than can be readily marked and assessed in class quantities. This does not prepare the writing graduate for the gargantuan task of managing a project as large as a single title novel which can be up to 100,000 words and often is more. This study explores the question of what writing tools and practices best equip an emerging writer to begin, write and manage a long narrative within a deadline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the role of intuition in the way that people operate unfamiliar devices. Intuition is a type of cognitive processing that is often non-conscious and utilises stored experiential knowledge. Intuitive interaction involves the use of knowledge gained from other products and/or experiences. Two initial experimental studies revealed that prior exposure to products employing similar features helped participants to complete set tasks more quickly and intuitively, and that familiar features were intuitively used more often than unfamiliar ones. A third experiment confirmed that performance is affected by a person's level of familiarity with similar technologies, and also revealed that appearance (shape, size and labelling of features) seems to be the variable that most affects time spent on a task and intuitive uses during that time. Age also seems to have an effect. These results and their implications are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider multi-robot systems that include sensor nodes and aerial or ground robots networked together. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We present a sensor network deployment method using autonomous aerial vehicles and describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for repair, to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth). © Springer-Verlag Berlin/Heidelberg 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a sensor network deployment method using autonomous flying robots. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data we collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for a second, repair, pass to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The experimental literature and studies using survey data have established that people care a great deal about their relative economic position and not solely, as standard economic theory assumes, about their absolute economic position. Individuals are concerned about social comparisons. However, behavioral evidence in the field is rare. This paper provides an empirical analysis, testing the model of inequality aversion using two unique panel data sets for basketball and soccer players. We find support that the concept of inequality aversion helps to understand how the relative income situation affects performance in a real competitive environment with real tasks and real incentives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observable environment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DMAPS (Distributed Multi-Agent Planning System) is a planning system developed for distributed multi-robot teams based on MAPS (Multi-Agent Planning System). MAPS assumes that each agent has the same global view of the environment in order to determine the most suitable actions. This assumption fails when perception is local to the agents: each agent has only a partial and unique view of the environment. DMAPS addresses this problem by creating a probabilistic global view on each agent by fusing the perceptual information from each robot. The experimental results on consuming tasks show that while the probabilistic global view is not identical on each robot, the shared view is still effective in increasing performance of the team.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Midwives are involved in a very dynamic profession. As they face their everyday tasks they encounter many different situations and a variety of people which results in a vast number of interactions. This narrative research project sought to identify some of the ‘ordinary’ encounters and interactions that midwives working in a hospital environment experience in their daily work and explore them from an ethical perspective. It found that many ethical decisions have to be made ‘on-the-run’, with no time to contemplate or decide what the best course of action might be. As ethics is embedded within every encounter a midwife has, it is essential that all midwives have an awareness and understanding of their own value systems, professional ethical codes and ethical principles that can act as guides when they have to make choices in these situations, which are frequently challenging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents advanced optimization techniques for Mission Path Planning (MPP) of a UAS fitted with a spore trap to detect and monitor spores and plant pathogens. The UAV MPP aims to optimise the mission path planning search and monitoring of spores and plant pathogens that may allow the agricultural sector to be more competitive and more reliable. The UAV will be fitted with an air sampling or spore trap to detect and monitor spores and plant pathogens in remote areas not accessible to current stationary monitor methods. The optimal paths are computed using a Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimisers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and Hybrid Game are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The trajectories on a three-dimension terrain, which are generated off-line, are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of coupling a Hybrid-Game strategy to a MOEA for MPP tasks. The reduction of numerical cost is an important point as the faster the algorithm converges the better the algorithms is for an off-line design and for future on-line decisions of the UAV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-driving related cognitive load and variations of emotional state may impact a driver’s capability to control a vehicle and introduces driving errors. Availability of reliable cognitive load and emotion detection in drivers would benefit the design of active safety systems and other intelligent in-vehicle interfaces. In this study, speech produced by 68 subjects while driving in urban areas is analyzed. A particular focus is on speech production differences in two secondary cognitive tasks, interactions with a co-driver and calls to automated spoken dialog systems (SDS), and two emotional states during the SDS interactions - neutral/negative. A number of speech parameters are found to vary across the cognitive/emotion classes. Suitability of selected cepstral- and production-based features for automatic cognitive task/emotion classification is investigated. A fusion of GMM/SVM classifiers yields an accuracy of 94.3% in cognitive task and 81.3% in emotion classification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) are temporary wireless networks useful in emergency rescue services, battlefields operations, mobile conferencing and a variety of other useful applications. Due to dynamic nature and lack of centralized monitoring points, these networks are highly vulnerable to attacks. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. We take benefit of the clustering concept in MANETs for the effective communication between nodes, where each cluster involves a number of member nodes and is managed by a cluster-head. It can be taken as an advantage in these battery and memory constrained networks for the purpose of intrusion detection, by separating tasks for the head and member nodes, at the same time providing opportunity for launching collaborative detection approach. The clustering schemes are generally used for the routing purposes to enhance the route efficiency. However, the effect of change of a cluster tends to change the route; thus degrades the performance. This paper presents a low overhead clustering algorithm for the benefit of detecting intrusion rather than efficient routing. It also discusses the intrusion detection techniques with the help of this simplified clustering scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the potential advantages of cheaper and increased sampling. An acoustic event detection algorithm is introduced that outputs a compact rectangular marquee description of each event. It can disentangle superimposed events, which are a common occurrence during morning and evening choruses. Next, three uses to which acoustic event detection can be put are illustrated. These tasks have been selected because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are a frequent contaminant of recordings of the terrestrial environment; (2) the detection of bird calls using the spatial distribution of their component events; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel, simple and effective approach for tele-operation of aerial robotic vehicles with haptic feedback. Such feedback provides the remote pilot with an intuitive feel of the robot’s state and perceived local environment that will ensure simple and safe operation in cluttered 3D environments common in inspection and surveillance tasks. Our approach is based on energetic considerations and uses the concepts of network theory and port-Hamiltonian systems. We provide a general framework for addressing problems such as mapping the limited stroke of a ‘master’ joystick to the infinite stroke of a ‘slave’ vehicle, while preserving passivity of the closed-loop system in the face of potential time delays in communications links and limited sensor data

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.