284 resultados para Induced circular dichroism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microenvironment plays a key role in the cellular differentiation of the two main cell lineages of the human breast, luminal epithelial, and myoepithelial. It is not clear, however, how the components of the microenvironment control the development of these cell lineages. To investigate how lineage development is regulated by 3-D culture and microenvironment components, we used the PMC42-LA human breast carcinoma cell line, which possesses stem cell characteristics. When cultured on a two-dimensional glass substrate, PMC42-LA cells formed a monolayer and expressed predominantly luminal epithelial markers, including cytokeratins 8, 18, and 19; E-cadherin; and sialomucin. The key myoepithelial-specific proteins α-smooth muscle actin and cytokeratin 14 were not expressed. When cultured within Engelbreth-Holm- Swarm sarcoma-derived basement membrane matrix (EHS matrix), PMC42-LA cells formed organoids in which the expression of luminal markers was reduced and the expression of other myoepithelial-specific markers (cytokeratin 17 and P-cadherin) was promoted. The presence of primary human mammary gland fibroblasts within the EHS matrix induced expression of the key myoepithelial-specific markers, α-smooth muscle actin and cytokeratin 14. Immortalized human skin fibroblasts were less effective in inducing expression of these key myoepithelial-specific markers. Confocal dual-labeling showed that individual cells expressed luminal or myoepithelial proteins, but not both. Conditioned medium from the mammary fibroblasts was equally effective in inducing myoepithelial marker expression. The results indicate that the myoepithelial lineage is promoted by the extracellular matrix, in conjunction with products secreted by breast-specific fibroblasts. Our results demonstrate a key role for the breast microenvironment in the regulation of breast lineage development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To investigate the potential of inflammation to induce new adipose tissue formation in the in vivo environment. Methods and results: Using an established model of in vivo adipogenesis, a silicone chamber containing a Matrigel and fibroblast growth factor 2 (1 μg/ml) matrix was implanted into each groin of an adult male C57Bl6 mouse and vascularized with the inferior epigastric vessels. Sterile inflammation was induced in one of the two chambers by suspending Zymosan-A (ZA) (200-0.02 μg/ml) in the matrix at implantation. Adipose tissue formation was assessed at 6, 8, 12 and 24 weeks. ZA induced significant adipogenesis in an inverse dose-dependent manner (P<0.001). At 6 weeks adipose tissue formation was greatest with the lowest concentrations of ZA and least with the highest. Adipogenesis occurred both locally in the chamber containing ZA and in the ZA-free chamber in the contralateral groin of the same animal. ZA induced a systemic inflammatory response characterized by elevated serum tumour necrosis factor-α levels at early time points. Aminoguanidine (40 μg/ml) inhibited the adipogenic response to ZA-induced inflammation. Adipose tissue formed in response to ZA remained stable for 24 weeks, even when exposed to the normal tissue environment. Conclusions: These results demonstrate that inflammation can drive neo-adipogenesis in vivo. This suggests the existence of a positive feedback mechanism in obesity, whereby the state of chronic, low-grade inflammation, characteristic of the condition, may promote further adipogenesis. The mobilization and recruitment of a circulating population of adipose precursor cells is likely to be implicated in this mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently shown that Matrigel-filled chambers containing fibroblast growth factor-2 (FGF2) and placed around an epigastric pedicle in the mouse were highly adipogenic. Contact of this construct with pre-existing tissue or a free adipose graft was required. To further investigate the mechanisms underpinning formation of new adipose tissue, we seeded these chambers with human adipose biopsies and human adipose-derived cell populations in severe combined immunodeficient mice and assessed the origin of the resultant adipose tissue after 6 weeks using species-specific probes. The tissues were negative for human-specific vimentin labeling, suggesting that the fat originates from the murine host rather than the human graft. This was supported by the strong presence of mouse-specific Cot-1 deoxyribonucleic acid labeling, and the absence of human Cot-1 labeling in the new fat. Even chambers seeded with FGF2/Matrigel containing cultured human stromal-vascular fraction (SVF) labeled strongly only for human vimentin in cells that did not have a mature adipocyte phenotype; the newly formed fat tissue was negative for human vimentin. These findings indicate that grafts placed in the chamber have an inductive function for neo-adipogenesis, rather than supplying adipocyte-precursor cells to generate the new fat tissue, and preliminary observations implicate the SVF in producing inductive factors. This surprising finding opens the door for refinement of current adipose tissue-engineering approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PMC42-LA cells display an epithelial phenotype: the cells congregate into pavement epithelial sheets in which E-cadherin and β-catenin are localized at cell-cell borders. They abundantly express cytokeratins, although 5% to 10% of the cells also express the mesenchymal marker vimentin. Stimulation of PMC42-LA cells with epidermal growth factor (EGF) leads to epithelio-mesenchymal transition-like changes including up-regulation of vimentin and down-regulation of E-cadherin. Vimentin expression is seen in virtually all cells, and this increase is abrogated by treatment of cells with an EGF receptor antagonist. The expression of the mesenchyme-associated extracellular matrix molecules fibronectin and chondroitin sulfate proteoglycan also increase in the presence of EGF. PMC42-LA cells adhere rapidly to collagen I, collagen IV, and laminin-1 substrates and markedly more slowly to fibronectin and vitronectin. EGF increases the speed of cell adhesion to most of these extracellular matrix molecules without altering the order of adhesive preference. EGF also caused a time-dependent increase in the motility of PMC42-LA cells, commensurate with the degree of vimentin staining. The increase in motility was at least partly chemokinetic, because it was evident both with and without chemoattractive stimuli. Although E-cadherin staining at cell-cell junctions disappeared in response to EGF, β-catenin persisted at the cell periphery. Further analysis revealed that N-cadherin was present at the cell-cell junctions of untreated cells and that expression was increased after EGF treatment. N- and E-cadherin are not usually coexpressed in human carcinoma cell lines but can be coexpressed in embryonic tissues, and this may signify an epithelial cell population prone to epithelio-mesenchymal-like responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that fibroblasts and invasive human breast carcinoma (HBC) cells specifically activate matrix metalloproteinase- 2 (MMP-2) when cultured on 3-dimensional gels of type I collagen but not a range of other substrates. We show here the constitutive expression of membrane-type 1 (MT1)-MMP in both fibroblasts, and invasive HBC cell lines, that have fibroblastic attributes presumably acquired through an epithelial- to-mesenchymal transition (EMT). Treatment with collagen type I increased the steady-state MT1-MMP mRNA levels in these cells but did not induce either MT1-MMP expression or MMP-2 activation in noninvasive breast carcinoma cell lines, which retain epithelial features. Basal MT3-MMP mRNA expression had a pattern similar to that of MT1-MMP but was not up-regulated by collagen. MT4- MMP mRNA was seen in both invasive and noninvasive HBC cell lines and was also not collagen-regulated, and MT2-MMP mRNA was not detected in any of the HBC cell lines tested. These data support a role for MT1-MMP in the collagen- induced MMP-2-activation seen in these cells. In situ hybridization analysis of archival breast cancer specimens revealed a close parallel in expression of both collagen type I and MT1-MMP mRNA in peritumoral fibroblasts, which was correlated with aggressiveness of the lesion. Relatively high levels of expression of both mRNA species were seen in fibroblasts close to invasive tumor nests and, although only focally, in certain areas close to preinvasive tumors. These foci may represent hot spots for local degradation and invasive progression. Collectively, these results implicate MT1-MMP in collagen- stimulated MMP-2 activation and suggest that this mechanism may be employed in vivo by both tumor-associated fibroblasts and EMT-derived carcinoma cells to facilitate increased invasion and/or metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To investigate the effects of a natural oil-based emulsion containing allantoin versus aqueous cream for preventing and managing radiation induced skin reactions (RISR). Methods and Materials A total of 174 patients were randomised and participated in the study. Patients either received Cream 1 (the natural oil-based emulsion containing allantoin) or Cream 2 (aqueous cream). Skin toxicity, pain, itching and skin-related quality of life scores were collected for up to four weeks after radiation treatment. Results Patients who received Cream 1 had a significantly lower average level of Common Toxicity Criteria at week 3 (p<0.05), but had statistically higher average levels of skin toxicity at weeks 7, 8 and 9 (all p<0.001). Similar results were observed when skin toxicity was analysed by grades. With regards to pain, patients in the Cream 2 group had a significantly higher average level of worst pain (p<0.05) and itching (p=0.046) compared to the Cream 1 group at week 3, however these differences were not observed at other weeks. In addition, there was a strong trend for Cream 2 to reduce the incidence of grade 2 or more skin toxicity in comparison to Cream 1 (p=0.056). Overall, more participants in the Cream 1 group were required to use another topical treatment at weeks 8 (p=0.049) and 9 (p=0.01). Conclusion The natural oil-based emulsion containing allantoin appears to have similar effects for managing skin toxicity compared to aqueous cream up to week 5, however, it becomes significantly less effective at later weeks into the radiation treatment and beyond treatment completion (week 6 and beyond). There were no major differences in pain, itching and skin-related quality of life. In light of these results, clinicians and patients can base their decision on costs and preferences. Overall, aqueous cream appears to be a more preferred option.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a new tuneable alternating current (ac) electrohydrodynamics (ac-EHD) force referred to as “nanoshearing” which involves fluid flow generated within a few nanometers of an electrode surface. This force can be externally tuned via manipulating the applied ac-EHD field strength. The ability to manipulate ac-EHD induced forces and concomitant fluid micromixing can enhance fluid transport within the capture domain of the channel (e.g., transport of analytes and hence increase target–sensor interactions). This also provides a new capability to preferentially select strongly bound analytes over onspecifically bound cells and molecules. To demonstrate the utility and versatility of nanoshearing phenomenon to specifically capture cancer cells, we present proof-of-concept data in lysed blood using two microfluidic devices containing a long array of asymmetric planar electrode pairs. Under the optimal experimental conditions, we achieved high capture efficiency (e.g., approximately 90%; %RSD=2, n=3) with a 10-fold reduction in nonspecific dsorption of non-target cells for the detection of whole cells expressing Human Epidermal Growth Factor Receptor 2 (HER2). We believe that our ac-EHD devices and the use of tuneable nanoshearing phenomenon may find relevance in a wide variety of biological and medical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation of a rectangular block into an annular wedge is studied with respect to the state of swelling interior to the block. Nonuniform swelling fields are shown to generate these flexure deformations in the absence of resultant forces and bending moments. Analytical expressions for the deformation fields demonstrate these effects for both incompressible and compressible generalizations of conventional hyperelastic materials. Existing results in the absence of a swelling agent are recovered as special cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the combined azimuthal and axial shear of a compressible isotropic elastic circular cylindrical tube of finite extent, otherwise referred to as helical shear (which is an isochoric deformation). The equilibrium equations are formulated in terms of the principal stretches, and explicit necessary and sufficient conditions on the strain-energy function for the material to support this deformation are obtained and compared with those obtained previously for this problem. Several classes of strain-energy functions are derived and in some general cases complete solutions of the equilibrium equations are obtained. Existing results are recovered as special cases and some new results for the strain-energy functions derived are determined and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the combined extension and torsion of a compressible isotropic elastic cylinder of finite extent. The equilibrium equations are formulated in terms of the principal stretches and then applied to the special case of pure torsion superimposed on a uniform extension (an isochoric deformation). Explicit necessary and sufficient conditions on the strain-energy function for the material to support this deformation with vanishing traction on the lateral surfaces of the cylinder are obtained. Some strain-energy functions satisfying these conditions are considered, existing results are recovered as special cases and new results are obtained. We also point out how the strain-energy functions generated from the considered isochoric deformation considered (of a compressible material) can be used to generate energy functions and corresponding solutions for the incompressible theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferromagnetism in graphene is fascinating, but it is still a big challenge for practical applications due to the weak magnetization. In order to enhance the magnetization, here, we design plasma-enabled graphene nanopetals with ultra-long defective edges of up to 105 m/g, ultra-dense lattice vacancies, and hydrogen chemisorptions. The designed graphene nanopetals display robust ferromagnetism with large saturation magnetization of up to 2 emu/g at 5 K and 1.2 emu/g at room temperatures. This work identifies the plasma-enabled graphene nanopetals as a promising candidate for graphene-based magnetic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium is sputtered on multi-walled carbon nanotube forests to form carbon-metal core-shell nanowire arrays. These hybrid nanostructures exhibited resistive responses when exposed to hydrogen with an excellent baseline recovery at room temperature. The magnitude of the response is shown to be tuneable by an applied voltage. Unlike the charge-transfer mechanism commonly attributed to Pd nanoparticle-decorated carbon nanotubes, this demonstrates that the hydrogen response mechanism of the multi-walled carbon nanotube-Pd core-shell nanostructure is due to the increase in electron scattering induced by physisorption of hydrogen. These hybrid core-shell nanostructures are promising for gas detection in hydrogen storage applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reports show that cold atmospheric-pressure plasmas can induce death of cancer cells in several minutes. However, very little is presently known about the mechanism of the plasma-induced death of cancer cells. In this paper, an atmospheric-pressure plasma plume is used to treat HepG2 cells. The experimental results show that the plasma can effectively control the intracellular concentrations of ROS, NO and lipid peroxide. It is shown that these concentrations are directly related to the mechanism of the HepG2 death, which involves several stages. First, the plasma generates NO species, which increases the NO concentration in the extracellular medium. Second, the intracellular NO concentration is increased due to the NO diffusion from the medium. Third, an increase in the intracellular NO concentration leads to the increase of the intracellular ROS concentration. Fourth, the increased oxidative stress results in more effective lipid peroxidation and consequently, cell injury. The combined action of NO, ROS and lipid peroxide species eventually results in the HepG2 cell death. The mechanism of death of human hepatocellular carcinoma cells (HepG2) induced by atmospheric-pressure room-temperature plasma, related to the plasma-controlled intracellular concentrations of reactive oxygen species (ROS), nitric oxide (NO) and lipid peroxide is revealed. Only 34.75 s are required to reduce the number of the viable HepG2 cells by 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.