214 resultados para GLASS-INFILTRATED ALUMINA COMPOSITE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the influence of structural sealant joints on the blast performance of laminated glass (LG) panels, using a comprehensive numerical procedure. A parametric study was carried out by varying the width, thickness and the Young’s modulus (E) of the structural silicone sealant joints and the behavior of the LG panel was studied under two different blast loads. Results show that these parameters influence the blast response of LG panels, especially under the higher blast load. Sealant joints that are thicker, have smaller widths and lower E values increase the flexibility at the supports and hence increase the energy absorption of the LG panel while reducing the support reactions. Results also confirmed that sealant joints designed according to current standards perform well under blast loads. Modeling techniques presented in this paper could be used to complement and supplement the guidance in existing design standards. The new information generated in this paper will contribute towards safer and more economical designs of entire facade systems including window glazing, frames and supporting structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control over nucleation and growth of multi-walled carbon nanotubes in the nanochannels of porous alumina membranes by several combinations of posttreatments, namely exposing the membrane top surface to atmospheric plasma jet and application of standard S1813 photoresist as an additional carbon precursor, is demonstrated. The nanotubes grown after plasma treatment nucleated inside the channels and did not form fibrous mats on the surface. Thus, the nanotube growth mode can be controlled by surface treatment and application of additional precursor, and complex nanotube-based structures can be produced for various applications. A plausible mechanism of nanotube nucleation and growth in the channels is proposed, based on the estimated depth of ion flux penetration into the channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple, rapid, plasma-assisted synthesis of large-area arrays of vertically-aligned carbon nanowalls on highly-porous, transparent bare and gold-coated alumina membranes with the two pore sizes is reported. It is demonstrated that the complex patterns of vertically aligned nanowalls can nucleate and form different morphologies in the low-temperature plasmas. The process is stable, and the twofold change in the gas flow (10 and 20 sccm) does not noticeably influence the morphology of the nanowall pattern. Application of a thin (5 nm) gold layer to nanoporous membrane prior to the nanowall growth allows controlling the network morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The piezoelectric composite material could engender stress concentration resulting from small cracks during layers easily, as the cracks growth will lead to the failure of the whole structure. In this paper, a finite element model for piezoelectric composite materials by ABAQUS including interlayer crack was established, and the J integral and crack tip stress of different types PZT patches were calculated by using the equivalent integral method. Then, the J integral for adhesive layers with different thickness, elastic modulus considering and not considering piezoelectricity was investigated. The results show that the J integral of mode I, II reduces with thicker adhesive layer and lower elastic modules, and the J integral of mode II decreases more sharply than that of mode I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computational technique of the full ranges of the second-order inelastic behaviour evaluation of steel-concrete composite structure is not always sought forgivingly, and therefore it hinders the development and application of the performance-based design approach for the composite structure. To this end, this paper addresses of the advanced computational technique of the higher-order element with the refined plastic hinges to capture the all-ranges behaviour of an entire steel-concrete composite structure. Moreover, this paper presents the efficient and economical cross-section analysis to evaluate the element section capacity of the non-uniform and arbitrary composite section subjected to the axial and bending interaction. Based on the same single algorithm, it can accurately and effectively evaluate nearly continuous interaction capacity curve from decompression to pure bending technically, which is the important capacity range but highly nonlinear. Hence, this cross-section analysis provides the simple but unique algorithm for the design approach. In summary, the present nonlinear computational technique can simulate both material and geometric nonlinearities of the composite structure in the accurate, efficient and reliable fashion, including partial shear connection and gradual yielding at pre-yield stage, plasticity and strain-hardening effect due to axial and bending interaction at post-yield stage, loading redistribution, second-order P-δ and P-Δ effect, and also the stiffness and strength deterioration. And because of its reliable and accurate behavioural evaluation, the present technique can be extended for the design of the high-strength composite structure and potentially for the fibre-reinforced concrete structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the recent research progress on multi-layer composite structures composed of variety of materials. The utilization of multi-layer composite system is found to be common in metal structures and pavement systems. The layer of composite structure designed to encounter heavy dynamic energy should have sufficient ductility to counteract the intensity of energy. Therefore, the selection of materials and enhancement of interface bonding become crucial and both are discussed in this paper. The failure modes have also been explored in conjunction with stresses at failures and inferred solutions are also revealed. The paper attempts to reveal all technical facts on multi-layer composite structure in a broad field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An "atomic layer-by-layer" structure of Co3O4/graphene is developed as an anode material for lithium-ion batteries. Due to the atomic thickness of both the Co3O4 nanosheets and the graphene, the composite exhibits an ultrahigh specific capacity of 1134.4 mAh g-1 and an ultralong life up to 2000 cycles at 2.25 C, far beyond the performances of previously reported Co3O4/C composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper-like free-standing germanium (Ge) and single-walled carbon nanotube (SWCNT) composite anodes were synthesized by the vacuum filtration of Ge/SWCNT composites, which were prepared by a facile aqueous-based method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Electrochemical measurements demonstrate that the Ge/SWCNT composite paper anode with the weight percentage of 32% Ge delivered a specific discharge capacity of 417 mA h g-1 after 40 cycles at a current density of 25 mA g-1, 117% higher than the pure SWCNT paper anode. The SWCNTs not only function as a flexible mechanical support for strain release, but also provide excellent electrically conducting channels, while the nanosized Ge particles contribute to improving the discharge capacity of the paper anode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead germanate-graphene nanosheets (PbGeO3-GNS) composites have been prepared by an efficient one-step, in-situ hydrothermal method and were used as anode materials for Li-ion batteries (LIBs). The PbGeO3 nanowires, around 100–200 nm in diameter, are highly encapsulated in a graphene matrix. The lithiation and de-lithiation reaction mechanisms of the PbGeO3 anode during the charge-discharge processes have been investigated by X-ray diffraction and electrochemical characterization. Compared with pure PbGeO3 anode, dramatic improvements in the electrochemical performance of the composite anodes have been obtained. In the voltage window of 0.01–1.50 V, the composite anode with 20 wt.% GNS delivers a discharge capacity of 607 mAh g−1 at 100 mA g−1 after 50 cycles. Even at a high current density of 1600 mA g−1, a capacity of 406 mAh g−1 can be achieved. Therefore, the PbGeO3-GNS composite can be considered as a potential anode material for lithium ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BaZr0.8Y0.2O3- (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a combustion method as anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to 1100C for 6 h, the composite powders were made of a well-dispersed mixture of two phases, BZY and NiO. Chemical stability tests showed that the BZY-NiO anodic powders had good stability against CO2, whereas comparative tests under the same conditions showed degradation for BaCe0.7Zr 0.1Y0.2O3--NiO, which is at present the most used anode material for proton-conducting SOFCs. Area specific resistance (ASR) measurements for BZY-NiO anodes showed that their electrochemical performance depended on the BZY-NiO weight ratio. The best performance was obtained for the anode containing 50 wt BZY and 50 wt NiO, which showed the smallest ASR values in the whole testing temperature range (0.37 cm2 at 600C). The 50 wt BZY and 50 wt NiO anode prepared by combustion also showed superior performance than that of the BZY-NiO anode conventionally made by a mechanical mixing route, as well as that of Pt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional expectations of the domestic environment. At the same time, as a space of escalating technological control, the modern domestic interior also offered new potential to redefine the meaning and means of habitation. The inherent tension between these opposing forces is particularly evident in the introduction of new electric lighting technology and applications into the modern domestic interior in the mid-twentieth century. Addressing this nexus of technology and domestic psychology, this article examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson's New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House, this study illustrates how Johnson employed electric light to negotiate the visual environment of the estate as well as to help sustain a highly aestheticized domestic lifestyle. Contextualized within the existing literature, this analysis provides a more nuanced understanding of the New Canaan estate as an expression of Johnson's interests as a designer as well as a subversion of traditional suburban conventions.