207 resultados para Fr-IR spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The safe working lifetime of a structure in a corrosive or other harsh environment is frequently not limited by the material itself but rather by the integrity of the coating material. Advanced surface coatings are usually crosslinked organic polymers such as epoxies and polyurethanes which must not shrink, crack or degrade when exposed to environmental extremes. While standard test methods for environmental durability of coatings have been devised, the tests are structured more towards determining the end of life rather than in anticipation of degradation. We have been developing prognostic tools to anticipate coating failure by using a fundamental understanding of their degradation behaviour which, depending on the polymer structure, is mediated through hydrolytic or oxidation processes. Fourier transform infrared spectroscopy (FTIR) is a widely-used laboratory technique for the analysis of polymer degradation and with the development of portable FTIR spectrometers, new opportunities have arisen to measure polymer degradation non-destructively in the field. For IR reflectance sampling, both diffuse (scattered) and specular (direct) reflections can occur. The complexity in these spectra has provided interesting opportunities to study surface chemical and physical changes during paint curing, service abrasion and weathering, but has often required the use of advanced statistical analysis methods such as chemometrics to discern these changes. Results from our studies using this and related techniques and the technical challenges that have arisen will be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag-2 (+) is compared with a literature spectrum as a further benchmark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultraviolet photodissociation of gas-phase N-methylpyridinium ions is studied at room temperature using laser photodissociation mass spectrometry and structurally diagnostic ion-molecule reaction kinetics. The C5H5N-CH3+ (m/z 94), C5H5N-CD3+ (m/z 97), and C5D5N-CH3+(m/z 99) isotopologues are investigated, and it is shown that the N-methylpyridinium ion photodissociates by the loss of methane in the 36 000 - 43 000 cm(-1) (280 - 230 nm) region. The dissociation likely occurs on the ground state surface following internal conversion from the SI state. For each isotopologue, by monitoring the photofragmentation yield as a function of photon wavenumber, a broad vibronically featured band is recorded with origin (0-0) transitions assigned at 38 130, 38 140 and 38 320 cm(-1) for C5H5N-CH3+ C5H5N-CD3+ and C5D5N-CH3+, respectively. With the aid of quantum chemical calculations (CASSCF(6,6)/aug-cc-pVDZ), most of the observed vibronic detail is assigned to two in-plane ring deformation modes. Finally, using ion-molecule reactions, the methane coproduct at m/z 78 is confirmed as a 2-pyridinylium ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently developed a binding assay format by incorporating native transmembrane receptors into artificial phospholipid bilayers on biosensor devices for surface plasmon resonance spectroscopy. By extending the method to surface plasmon-enhanced fluorescence spectroscopy (SPFS), sensitive recording of the association of even very small ligands is enabled. Herewith, we monitored binding of synthetic mono- and oligomeric RGD-based peptides and peptidomimetics to integrins alphavbeta3 and alphavbeta5, after having confirmed correct orientation and functionality of membrane-embedded integrins. We evaluated integrin binding of RGD multimers linked together via aminohexanoic acid (Ahx) spacers and showed that the dimer revealed higher binding activity than the tetramer, followed by the RGD monomers. The peptidomimetic was also found to be highly active with a slightly higher selectivity toward alphavbeta3. The different compounds were also evaluated in in vitro cell adhesion tests for their capacity to interfere with alphavbeta3-mediated cell attachment to vitronectin. We hereby demonstrated that the different RGD monomers were similarly effective; the RGD dimer and tetramer showed comparable IC50 values, which were, however, significantly higher than those of the monomers. Best cell detachment from vitronectin was achieved by the peptidomimetic. The novel SPFS-binding assay platform proves to be a suitable, reliable, and sensitive method to monitor the binding capacity of small ligands to native transmembrane receptors, here demonstrated for integrins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social Media Analytics ist ein neuer Forschungsbereich, in dem interdisziplinäre Methoden kombiniert, erweitert und angepasst werden, um Social-Media-Daten auszuwerten. Neben der Beantwortung von Forschungsfragen ist es ebenfalls ein Ziel, Architekturentwürfe für die Entwicklung neuer Informationssysteme und Anwendungen bereitzustellen, die auf sozialen Medien basieren. Der Beitrag stellt die wichtigsten Aspekte des Bereichs Social Media Analytics vor und verweist auf die Notwendigkeit einer fächerübergreifenden Forschungsagenda, für deren Erstellung und Bearbeitung der Wirtschaftsinformatik eine wichtige Rolle zukommt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maxwellite NaFe3+(AsO4)F is an arsenate mineral containing fluoride and forms a continuous series with tilasite CaMg(AsO4)F. Both maxwellite and tilasite form a continuous series with durangite NaAl3+(AsO4)-F. We have used the combination of scanning electron microscopy with EDS and vibrational spectroscopy to chemically analyse the mineral maxwellite and make an assessment of the molecular structure. Chemical analysis shows that maxwellite is composed of Fe, Na and Ca with minor amounts of Mn and Al. Raman bands for tilasite at 851 and 831 cm�1 are assigned to the Raman active m1 symmetric stretching vibration (A1) and the Raman active triply degenerate m3 antisymmetric stretching vibration (F2). The Raman band of maxwellite at 871 cm�1 is assigned to the m1 symmetric stretching vibration and the Raman band at 812 cm�1 is assigned to the m3 antisymmetric stretching vibration. The intense Raman band of tilasite at 467 cm�1 is assigned to the Raman active triply degenerate m4 bending vibration (F2). Raman band at 331 cm�1 for tilasite is assigned to the Raman active doubly degenerate m2 symmetric bending vibration (E). Both Raman and infrared spectroscopy do not identify any bands in the hydroxyl stretching region as is expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A natural single-crystal specimen of the kröhnkite from Chuquicamata, Chile, with the general formula Na2Cu(SO4)2 · 2H2O, was investigated by Raman and infrared spectroscopy. The mineral kröhnkite is found in many parts of the world's arid areas. Kröhnkite crystallizes in the monoclinic crystal system with point group 2/m and space group P21/c. It is an uncommon secondary mineral formed in the oxidized zone of copper deposits, typically in very arid climates. The Raman spectrum of kröhnkite dominated by a very sharp intense band at 992 cm−1 is assigned to the ν1 symmetric stretching mode and Raman bands at 1046, 1049, 1138, 1164, and 1177 cm−1 are assigned to the ν3 antisymmetric stretching vibrations. The infrared spectrum shows an intense band at 992 cm−1. The Raman bands at 569, 582, 612, 634, 642, 655, and 660 cm−1 are assigned to the ν4 bending modes. Three Raman bands observed at 429, 445, and 463 cm−1 are attributed to the ν2 bending modes. The observation that three or four bands are seen in the ν4 region of kröhnkite is attributed to the reduction of symmetry to C2v or less.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alunite supergroup of minerals is a large hydroxy-sulfate mineral group, which has seen renewed interest following their discovery on Mars. Numerous reviews exist concerning nomenclature, formation, and natural occurrence of this mineral group. Sulfate minerals in general are widely studied and their vibrational spectra are well characterized. However, no specific review concerning alunite and jarosite spectroscopy and crystal structure has been forthcoming. This review focuses on the controversial aspects of the crystal structure and vibrational spectroscopy of jarosite and alunite minerals. Inconsistencies regarding band assignments especially in the 1000–400 cm−1 region plague these two mineral groups and result in different band assignments among the various spectroscopic studies. There are significant crystallographic and magnetic structure ambiguities with regards to ammonium and hydronium end-members, namely, the geometry these two ions assume in the structure and the fact that hydronium jarosite is a spin glass. It was also found that the synthetic causes for the super cell in plumbojarosite, minamiite, huangite, and walthierite are not known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aground-based tracking camera and coaligned slitless spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth’s atmosphere in June 2010. Good quality spectra were obtained, which showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the blackbody nature of the radiation concluded that the peak average temperature of the surface was about (3100± 100)K. Line spectra from oxygen and nitrogen atoms were used to infer a peak average shock-heated gas temperature of around((7000±400))K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used a tandem pair of supersonic nozzles to produce clean samples of CH3OO radicals in cryogenic matrices. One hyperthermal nozzle decomposes azomethane (CH3NNCH3) to generate intense pulses of CH3 radicals, While the second nozzle alternately fires a burst Of O-2/Ar at the 20 K matrix. The CH3/O-2/20 K argon radical sandwich acts to produce target methylperoxyl radicals: CH3 + O-2 --> CH3OO. The absorption spectra of the radicals are monitored with a Fourier transform infrared spectrometer. We report 10 of the 12 fundamental infrared bands of the methylperoxyl radical CH3OO, (X) over tilde (2)A", in an argon matrix at 20 K. The experimental frequencies (cm(-1)) and polarizations follow: the a' modes are 3032, 2957, 1448, 1410, 1180, 1109, 90, 492, while the a" modes are 3024 and 1434. We cannot detect the asymmetric CH3 rocking mode, nu(11), nor the torsion, nu(12). The infrared spectra of (CH3OO)-O-18-O-18, (CH3OO)-C-13, and CD3OO have been measured as well in order to determine the isotopic shifts. The experimental frequencies, {nu}, for the methylperoxyl radicals are compared to harmonic frequencies, {omega}, resulting from a UB3LYP/6-311G(d,p) electronic structure calculation. Linear dichroism spectra were measured with photooriented radical samples in order to establish the experimental polarizations of most vibrational bands. The methylperoxyl radical matrix frequencies listed above are within +/-2% of the gas-phase vibrational frequencies. A final set of vibrational frequencies for the H radical, are recommended. See also http://ellison.colorado.edu/methylperoxyl.