205 resultados para Flying-machines
Resumo:
A new form of media installation combining image, multi-channel sound and internally lit objects into a mysterious, deep image plane. Staged on the very edge of spectrum blackout, and moving into the deep of night, Version 1 (Night Rage) for ISEA 2013 examined the many shades of 'nocturnal', threats to night biodiversity and the myriad myths and stories that have shaped our cultural understandings of life after light. Barely recognisable images float within landscapes of media, noise and sound as the work asserts a profound resistance to today's all consuming media mesh. Version 2 (Night Fall) for the Queensland State Museum examined contemporary ideas around the ‘night’ and the 'nocturnal'. Beginning with the dark myths and stories that have long shaped our cultural understandings of life after light, NIGHT FALL considers how fearful ideas have often underpinned actions that continue to reduce Australia’s extraordinary night biodiversity. Today’s growing hostility towards Australia’s ancient, iconic flying foxes - who have been quietly pollinating our forests for millennia - hints at just how far we have yet to travel in our thinking. Enter the darkened tunnel to experience mysterious, edge-of-perception 3D forms, enhanced by a range of cinematic, illusionary and animatronic techniques, and become immersed in a strangely familiar sound track based upon seasonal field recordings made after dark, sourced from across the eastern coast of Queensland.
Resumo:
This paper presents a novel control strategy for velocity tracking of Permanent Magnet Synchronous Machines (PMSM). The model of the machine is considered within the port-Hamiltonian framework and a control is designed using concepts of immersion and invariance (I&I) recently developed in the literature. The proposed controller ensures internal stability and output regulation, and it forces integral action on non-passive outputs.
Resumo:
Health care systems are highly dynamic not just due to developments and innovations in diagnosis and treatments, but also by virtue of emerging management techniques supported by modern information and communication technology. A multitude of stakeholders such as patients, nurses, general practitioners or social carers can be integrated by modeling complex interactions necessary for managing the provision and consumption of health care services. Furthermore, it is the availability of Service-oriented Architecture (SOA) that supports those integration efforts by enabling the flexible and reusable composition of autonomous, loosely-coupled and web-enabled software components. However, there is still the gap between SOA and predominantly business-oriented perspectives (e.g. business process models). The alignment of both views is crucial not just for the guided development of SOA but also for the sustainable evolution of holistic enterprise architectures. In this paper, we combine the Semantic Object Model (SOM) and the Business Process Modelling Notation (BPMN) towards a model-driven approach to service engineering. By addressing a business system in Home Telecare and deriving a business process model, which can eventually be controlled and executed by machines; in particular by composed web services, the full potential of a process-centric SOA is exploited.
Resumo:
This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.
Resumo:
Macrophonics II presents new Australian work emerging from the leading edge of performance interface research. The program addresses the emerging dialogue between traditional media and emerging digital media, as well as dialogues across a broad range of musical traditions. Recent technological developments are causing a complete reevaluation of the relationships between media and genres in art, and Macrophonics II presents a cross-section of responses to this situation. Works in the program foreground an approach to performance that integrates sensors with novel performance control devices, and/or examine how machines can be made musical in performance. The program presents works by Australian artists Donna Hewitt, Julian Knowles and Wade Marynowsky, with choreography by Avril Huddy and dance performance by Lizzie and Zaimon Vilmanis. From sensor-based microphones and guitars, through performance a/v, to post-rock dronescapes, movement inspired works and experimental electronica, Macrophonics II provides a broad and engaging survey of new performance approaches in mediatised environments. Initial R&D for the work was supported by a range of institutions internationally, including the Australia Council for the Arts, Arts Queensland, STEIM (Holland) and the Nes Artist Residency (Iceland).
Resumo:
To harness safe operation of Web-based systems in Web environments, we propose an SSPA (Server-based SHA-1 Page-digest Algorithm) to verify the integrity of Web contents before the server issues an HTTP response to a user request. In addition to standard security measures, our Java implementation of the SSPA, which is called the Dynamic Security Surveillance Agent (DSSA), provides further security in terms of content integrity to Web-based systems. Its function is to prevent the display of Web contents that have been altered through the malicious acts of attackers and intruders on client machines. This is to protect the reputation of organisations from cyber-attacks and to ensure the safe operation of Web systems by dynamically monitoring the integrity of a Web site's content on demand. We discuss our findings in terms of the applicability and practicality of the proposed system. We also discuss its time metrics, specifically in relation to its computational overhead at the Web server, as well as the overall latency from the clients' point of view, using different Internet access methods. The SSPA, our DSSA implementation, some experimental results and related work are all discussed
Resumo:
A catalogue essay written for 'Tall Tales and Other Adventures: a University of Southern Queensland, Dogwood Crossing, Miles and Flying Arts research project.'
Resumo:
This paper presents a novel place recognition algorithm inspired by the recent discovery of overlapping and multi-scale spatial maps in the rodent brain. We mimic this hierarchical framework by training arrays of Support Vector Machines to recognize places at multiple spatial scales. Place match hypotheses are then cross-validated across all spatial scales, a process which combines the spatial specificity of the finest spatial map with the consensus provided by broader mapping scales. Experiments on three real-world datasets including a large robotics benchmark demonstrate that mapping over multiple scales uniformly improves place recognition performance over a single scale approach without sacrificing localization accuracy. We present analysis that illustrates how matching over multiple scales leads to better place recognition performance and discuss several promising areas for future investigation.
Resumo:
Brain decoding of functional Magnetic Resonance Imaging data is a pattern analysis task that links brain activity patterns to the experimental conditions. Classifiers predict the neural states from the spatial and temporal pattern of brain activity extracted from multiple voxels in the functional images in a certain period of time. The prediction results offer insight into the nature of neural representations and cognitive mechanisms and the classification accuracy determines our confidence in understanding the relationship between brain activity and stimuli. In this paper, we compared the efficacy of three machine learning algorithms: neural network, support vector machines, and conditional random field to decode the visual stimuli or neural cognitive states from functional Magnetic Resonance data. Leave-one-out cross validation was performed to quantify the generalization accuracy of each algorithm on unseen data. The results indicated support vector machine and conditional random field have comparable performance and the potential of the latter is worthy of further investigation.
Resumo:
A new small full bridge module for MMCC research is presented. Each full bridge converter cell is a single small (65 × 30 mm) multilayer PCB with two low voltage high current (22 V, 40 A) integrated half bridge ICs and the necessary isolated control signals and auxiliary power supply (2500 V isolation). All devices are surface mount, minimising cell height (4 mm) and parasitic inductance. Each converter cell can be physically stacked with PCB connectors propagating the control signals and inter-cell power connections. Many cells can be trivially stacked to create a large multilevel converter leg with isolated auxiliary power and control signals. Any of the MMCC family members is then easily formed. With a change in placement of stacking connector, a parallel connection of bridges is also possible. Operation of a nine level parallel full bridge is demonstrated at 12 V and 384 kHz switching frequency delivering a 30 W 2 kHz sinewave into a resistive load. A number of new applications for this novel module aside from MMCC development are listed.