474 resultados para Drummond, Gordon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a path planning technique for ground vehicles that accounts for the dynamics of the vehicle, the topography of the terrain and the wheel/ground interaction properties such as friction. The first two properties can be estimated using well known sensors and techniques, but the third is not often estimated even though it has a significant effect on the motion of a high-speed vehicle. We introduce a technique which allows the estimation of wheel slip from which frictional parameters can be inferred. We present simulation results which show the importance of modelling topography and ground properties and experimental results which show how ground properties can be estimated along a 350m outdoor traverse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we explore the ability of a recent model-based learning technique Receding Horizon Locally Weighted Regression (RH-LWR) useful for learning temporally dependent systems. In particular this paper investigates the application of RH-LWR to learn control of Multiple-input Multiple-output robot systems. RH-LWR is demonstrated through learning joint velocity and position control of a three Degree of Freedom (DoF) rigid body robot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent exponential rise in the number of behaviour disorders has been the focus of a wide range of commentaries, ranging from the pedagogic and the administrative, to the sociological, and even the legal. This book will be the first to apply, in a systematic and thorough manner, the ideas of the foundational discipline of philosophy. A number of philosophical tools are applied here, tools arising through the medium of the traditional philosophical debates, such as those concerning governance, truth, logic, ethics, free-will, law and language. Each forms a separate chapter, but together they constitute a comprehensive, rigorous and original insight into what is now an important set of concerns for all those interested in the governance of children. The intention is threefold: first, to demonstrate the utility, accessibility and effectiveness of philosophical ideas within this important academic area. Philosophy does not have to be regarded an arcane and esoteric discipline, with only limited contemporary application, far from it. Second, the book offers a new set of approaches and ideas for both researchers and practitioners within education, a field is in danger of continually using the same ideas, to endlessly repeat the same conclusions. Third, the book offers a viable alternative to the dominant psychological model which increasingly employs pathology as its central rationale for conduct. The book would not only be of interest to mainstream educators, and to those students and academics interested in philosophy, and more specifically, the application of philosophical ideas to educational issues, it would also be an appropriate text for courses on education and difference, and due to the breadth of the philosophical issues addressed, courses on applied philosophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Exercise interventions during adjuvant cancer therapy have been shown to increase functional capacity, relieve fatigue and distress and may assist rates of chemotherapy completion. These studies have been limited to breast, gastric and mixed cancer groups and it is not yet known if a similar intervention is even feasible among women with ovarian cancer. We aimed to assess safety, feasibility and potential effect of a walking intervention in women undergoing chemotherapy for ovarian cancer. Methods: Women newly diagnosed with ovarian cancer were recruited to participate in an individualised walking intervention throughout chemotherapy and were assessed pre-and post-intervention. Feasibility measures included session adherence, compliance with exercise physiologist prescribed walking targets and self-reported program acceptability. Changes in objective physical functioning (6 minute walk test), self-reported distress (Hospital Anxiety and Depression Scale), symptoms (Memorial Symptom Assessment Scale - Physical) and quality of life (Functional Assessment of Cancer Therapy - Ovarian) were calculated, and chemotherapy completion and adverse intervention effects recorded. Results: Seventeen women were enrolled (63% recruitment rate). Mean age was 60 years (SD = 8 years), 88% were diagnosed with FIGO stage III or IV disease, 14 women underwent adjuvant and three neo-adjuvant chemotherapy. On average, women adhered to > 80% of their intervention sessions and complied with 76% of their walking targets, with the majority walking four days a week at moderate intensity for 30 minutes per session. Meaningful improvements were found in physical functioning, physical symptoms, physical well-being and ovarian cancerspecific quality of life. Most women (76%) completed ≥85% of their planned chemotherapy dose. There were no withdrawals or serious adverse events and all women reported the program as being helpful. Conclusions: These positive preliminary results suggest that this walking intervention for women receiving chemotherapy for ovarian cancer is safe, feasible and acceptable and could be used in development of future work. Trial registration: ACTRN12609000252213

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object segmentation is one of the fundamental steps for a number of robotic applications such as manipulation, object detection, and obstacle avoidance. This paper proposes a visual method for incorporating colour and depth information from sequential multiview stereo images to segment objects of interest from complex and cluttered environments. Rather than segmenting objects using information from a single frame in the sequence, we incorporate information from neighbouring views to increase the reliability of the information and improve the overall segmentation result. Specifically, dense depth information of a scene is computed using multiple view stereo. Depths from neighbouring views are reprojected into the reference frame to be segmented compensating for imperfect depth computations for individual frames. The multiple depth layers are then combined with color information from the reference frame to create a Markov random field to model the segmentation problem. Finally, graphcut optimisation is employed to infer pixels belonging to the object to be segmented. The segmentation accuracy is evaluated over images from an outdoor video sequence demonstrating the viability for automatic object segmentation for mobile robots using monocular cameras as a primary sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the challenge of developing robots that map and navigate autonomously in real world, dynamic environments throughout the robot’s entire lifetime – the problem of lifelong navigation. Static mapping algorithms can produce highly accurate maps, but have found few applications in real environments that are in constant flux. Environments change in many ways: both rapidly and gradually, transiently and permanently, geometrically and in appearance. This paper demonstrates a biologically inspired navigation algorithm, RatSLAM, that uses principles found in rodent neural circuits. The algorithm is demonstrated in an office delivery challenge where the robot was required to perform mock deliveries to goal locations in two different buildings. The robot successfully completed 1177 out of 1178 navigation trials over 37 hours of around the clock operation spread over 11 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper an existing method for indoor Simultaneous Localisation and Mapping (SLAM) is extended to operate in large outdoor environments using an omnidirectional camera as its principal external sensor. The method, RatSLAM, is based upon computational models of the area in the rat brain that maintains the rodent’s idea of its position in the world. The system uses the visual appearance of different locations to build hybrid spatial-topological maps of places it has experienced that facilitate relocalisation and path planning. A large dataset was acquired from a dynamic campus environment and used to verify the system’s ability to construct representations of the world and simultaneously use these representations to maintain localisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The past two decades have witnessed a surge in interest in the field of nascent entrepreneurship. In this collection, the editors successfully draw together the most important works that utilize the new real-time approaches for studying early stage entrepreneurial activity that were developed and refined in the last couple of decades. Providing the empirical, theoretical and methodological insights from some of the most influential researchers in this field, this book is an indispensable source of reference for researchers, students and others who have an interest in new venture creation and its role in the economy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel technique for performing SLAM along a continuous trajectory of appearance. Derived from components of FastSLAM and FAB-MAP, the new system dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM) augments appearancebased place recognition with particle-filter based ‘pose filtering’ within a probabilistic framework, without calculating global feature geometry or performing 3D map construction. For loop closure detection CAT-SLAM updates in constant time regardless of map size. We evaluate the effectiveness of CAT-SLAM on a 16km outdoor road network and determine its loop closure performance relative to FAB-MAP. CAT-SLAM recognizes 3 times the number of loop closures for the case where no false positives occur, demonstrating its potential use for robust loop closure detection in large environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a new algorithm for boosting visual template recall performance through a process of visual expectation. Visual expectation dynamically modifies the recognition thresholds of learnt visual templates based on recently matched templates, improving the recall of sequences of familiar places while keeping precision high, without any feedback from a mapping backend. We demonstrate the performance benefits of visual expectation using two 17 kilometer datasets gathered in an outdoor environment at two times separated by three weeks. The visual expectation algorithm provides up to a 100% improvement in recall. We also combine the visual expectation algorithm with the RatSLAM SLAM system and show how the algorithm enables successful mapping

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lingodroids are a pair of mobile robots that evolve a language for places and relationships between places (based on distance and direction). Each robot in these studies has its own understanding of the layout of the world, based on its unique experiences and exploration of the environment. Despite having different internal representations of the world, the robots are able to develop a common lexicon for places, and then use simple sentences to explain and understand relationships between places even places that they could not physically experience, such as areas behind closed doors. By learning the language, the robots are able to develop representations for places that are inaccessible to them, and later, when the doors are opened, use those representations to perform goal-directed behavior.