308 resultados para Dopamine Responsive Gene-1
Resumo:
The molecular mechanisms involved in non‑small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, non-tumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5' capped and 3' polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression.
Resumo:
We previously showed that integrin alphavbeta3 overexpression and engagement by its ligand vitronectin increased adhesion, motility, and proliferation of human ovarian cancer cells. In search of differentially regulated genes involved in these tumor biological events, we previously identified the integrin-linked kinase (ILK) to be under control of alphavbeta3. In the present investigation we demonstrated significantly upregulated ILK protein as a function of alphavbeta3 in two ovarian cancer cell lines, OV-MZ-6 and OVCAR-3, and proved co-localization at the surface of alphavbeta3-overexpressing cells adherent to vitronectin. Increase of ILK protein was reflected by enhanced ILK promoter activity, an effect, which we further characterized with regard to transcriptional response elements involved. Abrogation of NF-kappaB/c-rel or p53 binding augmented ILK promoter activity and preserved induction by alphavbeta3. The AP1-mutant exhibited decreased promoter activity but was also still inducible by alphavbeta3. Disruption of the two DNA consensus motifs for Ets proteins led to divergent observations: mutation of the Ets motif at promoter position -462 bp did not significantly alter promoter activity but still allowed response to alphavbeta3. In contrast, disruption of the second Ets motif at position -85 bp did not only lead to slightly diminished promoter activity but also, in that case, abrogated ILK promoter induction by alphavbeta3. Subsequent co-transfection studies with ets-1 in the presence of the second Ets motif led to additional induction of ILK promoter activity. Taken together, these data suggest that ets-1 binding to the second Ets DNA motif strongly contributes to alphavbeta3-mediated ILK upregulation. By increasing ILK as an important integrin-proximal kinase, alphavbeta3 may promote its intracellular signaling and tumor biological processes arising thereof in favor of ovarian cancer metastasis.
Resumo:
BACKGROUND: The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n=14 and 2n=22 ancestral marsupial karyotype. RESULTS: We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n=14) and therian mammal (2n=19) karyotypes to be reconstructed. CONCLUSIONS: Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n=14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome.
Resumo:
Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation.This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.
Resumo:
A number of observations have suggested that brain derived neurotrophic factor (BDNF) plays a role in migraine pathophysiology. This study investigates whether variants in the BDNF gene are associated with migraine in an Australian case-control population. Background. Brain derived neurotrophic factor (BDNF) has an important role in neural growth, development and survival in the central nervous system and is an important modulator of central and peripheral pain responses. Variants in BDNF, in particular the functional Val66Met polymorphism (rs6265), have been found to be associated with a number of psychiatric disorders, cognitive function and obesity. As BDNF has been found to be differentially expressed in a number of aspects related to migraine, we tested for association between single nucleotide polymorphisms (SNPs) in BDNF and migraine. Methods. Five SNPs in the BDNF locus (rs1519480, rs6265, rs712507, rs2049046 and rs12273363) were genotyped initially in a cohort of 277 migraine cases, including 172 diagnosed with migraine with aura (MA) and 105 with migraine without aura (MO), and 277 age- and sex-matched controls. Three of these SNPs (rs6265, rs2049046 and rs12273363) were subsequently genotyped in a second cohort of 580 migraineurs, including 473 diagnosed with MA and 105 with O, and 580 matched controls. Results. – BDNF SNPs rs1519480, rs6265, rs712507 and rs12273363 were not significantly associated with migraine. However, rs2049046 showed a significant association with migraine, and in particular, MA in the first cohort. In the second cohort, although an increase in the rs2049046 T-allele frequency was observed in migraine cases, and in both MA and MO subgroups, it was not significantly different from controls. Analysis of data combined from both cohorts for rs2049046 showed significant differences in the genotypic and allelic distributions for this marker in both migraine and the MA sub-group. Conclusion. This study confirmed previous studies that the functional BDNF SNP rs6265 (Val66Met) is not associated with migraine. However, we found that rs2049046, which resides at the 5’ end of 3 one the BDNF transcripts, may be associated with migraine, suggesting that further investigations of this SNP may be warranted.
Resumo:
Background: Recent evidence indicates that gene variants related to carotenoid metabolism play a role in the uptake of macular pigments lutein (L) and zeaxanthine (Z). Moreover, these pigments are proposed to reduce the risk for advanced age-related macular degeneration (AMD). This study provides the initial examination of the relationship between the gene variants related to carotenoid metabolism, macular pigment optical density (MPOD) and their combined expression in healthy humans and patients with AMD. Participants and Methods: Forty-four participants were enrolled from a general population and a private practice including 20 healthy participants and 24 patients with advanced (neovascular) AMD. Participants were genotyped for the three single nucleotide polymorphisms (SNPs) upstream from BCMO1, rs11645428, rs6420424 and rs6564851 that have been shown to either up or down regulate beta-carotene conversion efficiency in the plasma. MPOD was determined by heterochromatic flicker photometry. Results: Healthy participants with the rs11645428 GG genotype, rs6420424 AA genotype and rs6564851 GG genotype all had on average significantly lower MPOD compared to those with the other genotypes (p < 0.01 for all three comparisons). When combining BCMO1 genotypes reported to have “high” (rs11645428 AA/rs6420424 GG/rs6564851 TT) and “low” (rs11645428 GG/rs6420424 AA/rs6564851 GG) beta-carotene conversion efficiency, we demonstrate clear differences in MPOD values (p<0.01). In patients with AMD there were no significant differences in MPOD for any of the three BCMO1 gene variants. Conclusion: In healthy participants MPOD levels can be related to high and low beta-carotene conversion BCMO1 genotypes. Such relationships were not found in patients with advanced neovascular AMD, indicative of additional processes influencing carotenoid uptake, possibly related to other AMD susceptibility genes. Our findings indicate that specific BCMO1 SNPs should be determined when assessing the effects of carotenoid supplementation on macular pigment and that their expression may be influenced by retinal disease.
Resumo:
The mechanisms involved in alcohol use disorders are complex. It has been shown that ghrelin is an important signal for the control of body weight homeostasis, preferably by interacting with hypothalamic circuits, as well as for drug reward by activating the mesolimbic dopamine system. The ghrelin receptor (GHS-R1A) has been shown to be required for alcohol-induced reward. Additionally, ghrelin increases and GHR-R1A antagonists reduce moderate alcohol consumption in mice, and a single nucleotide polymorphism in the GHS-R1A gene has been associated with high alcohol consumption in humans. However, the role of central ghrelin signaling in high alcohol consumption is not known. Therefore, the role of GHS-R1A in operant self-administration of alcohol in rats as well as for high alcohol consumption in Long-Evans rats and in alcohol preferring [Alko alcohol (AA)] rats was studied here. In the present study, the GHS-R1A antagonist, JMV2959, was found to reduce the operant self-administration of alcohol in rats and to decrease high alcohol intake in Long-Evans rats as well as in AA rats. These results suggest that the ghrelin receptor signaling system, specifically GHS-R1A, is required for operant self-administration of alcohol and for high alcohol intake in rats. Therefore, the GHS-R1A may be a therapeutic target for treatment of addictive behaviors, such as alcohol dependence.
Resumo:
Introduction Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. Methods MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann–Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). Results Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. Conclusions This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.
Resumo:
Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis.
Resumo:
Background Flavonoids such as anthocyanins, flavonols and proanthocyanidins, play a central role in fruit colour, flavour and health attributes. In peach and nectarine (Prunus persica) these compounds vary during fruit growth and ripening. Flavonoids are produced by a well studied pathway which is transcriptionally regulated by members of the MYB and bHLH transcription factor families. We have isolated nectarine flavonoid regulating genes and examined their expression patterns, which suggests a critical role in the regulation of flavonoid biosynthesis. Results In nectarine, expression of the genes encoding enzymes of the flavonoid pathway correlated with the concentration of proanthocyanidins, which strongly increases at mid-development. In contrast, the only gene which showed a similar pattern to anthocyanin concentration was UDP-glucose-flavonoid-3-O-glucosyltransferase (UFGT), which was high at the beginning and end of fruit growth, remaining low during the other developmental stages. Expression of flavonol synthase (FLS1) correlated with flavonol levels, both temporally and in a tissue specific manner. The pattern of UFGT gene expression may be explained by the involvement of different transcription factors, which up-regulate flavonoid biosynthesis (MYB10, MYB123, and bHLH3), or repress (MYB111 and MYB16) the transcription of the biosynthetic genes. The expression of a potential proanthocyanidin-regulating transcription factor, MYBPA1, corresponded with proanthocyanidin levels. Functional assays of these transcription factors were used to test the specificity for flavonoid regulation. Conclusions MYB10 positively regulates the promoters of UFGT and dihydroflavonol 4-reductase (DFR) but not leucoanthocyanidin reductase (LAR). In contrast, MYBPA1 trans-activates the promoters of DFR and LAR, but not UFGT. This suggests exclusive roles of anthocyanin regulation by MYB10 and proanthocyanidin regulation by MYBPA1. Further, these transcription factors appeared to be responsive to both developmental and environmental stimuli.
Resumo:
Transient expression is a powerful method for the functional characterization of genes. In this chapter, we outline a protocol for the transient expression of constructs in Medicago truncatula leaves using Agrobacterium tumefaciens infiltration. Using quantitative real-time PCR we demonstrate that the infiltration of a construct containing the LEGUME ANTHOCYANIN PRODUCTION 1 (LAP1) transcription factor results in the strong upregulation of key biosynthetic genes and the accumulation of anthocyanin pigment in the leaves after just 3 days. Thus, this method provides a rapid and powerful way to the discovery of downstream targets of M. truncatula transcription factors.
Resumo:
Multiple copies of expression cassettes driven by the Trichoderma reesei xylanase 2 (xyn2) and cellobiohydrolase 2 (cbh2) promoters were introduced into the recombinant T. reesei EC-21 generated to express a thermostable Dictyoglomus thermophilum xylanase (XynB) under the egl2 promoter for further improvement of the enzyme yield. The transformants were screened based on increased XynB activity only. Multiple promoter transformant MPP-4 expressing the xynB gene under all the three promoters was found to be the highest producer of XynB, giving a 65% increase in yield compared to the parental single-promoter recombinant EC-21. The multiple-promoter transformant strains harboured six to nine copies of the xynB gene. Amongst the three promoters, egl2 seemed to have the strongest effect on XynB expression. The shotgun approach we used proved to be effective for rapid enhancement of protein expression using three promoters active at the near-neutral pH of the cultivation medium.
Resumo:
The Mekong is the most productive river fishery in the world, and such as, the Mekong River Basin (MRB) is very important to very large human populations across the region as a source of revenue (through fishing and marketing of aquatic resources products) and as the major source for local animal protein. Threats to biodiversity in the MRB, either to the fishery sector itself or to other sectors are a major concern, even though currently, fisheries across this region are still very productive. If not managed properly however, fish population declines will cause significant economic impact and affect livelihoods of local people and will have a major impact on food security and nutrition. Biodiversity declines will undoubtedly affect food security, income and socio-economic status of people in the MRB that depend on aquatic resources. This is an indicator of unsustainable development and hence should be avoided. Genetic diversity (biodiversity) that can be measured using techniques based on DNA markers; refers to variation within and among populations within the same species or reproductive units. In a population, new genetic variation is generated by sexual recombination contributed by individuals with mutations in genes and chromosomes. Over time, populations of a species that are not reproducing together will diverge as differential impacts of selection and genetic drift change their genetic attributes. For mud carp (Henicorhynchus spp.), understanding the status of breeding units in the MRB will be important for their long term persistence, sustainability and for implementing effective management strategies. Earlier analysis of stock structure in two economically important mud carp species (Henicorhynchus siamensis and H. lobatus) in the MRB completed with mtDNA markers identified a number of populations of both species where gene flow had apparently been interrupted or reduced but applying these data directly to management unit identification is potentially compromised because information was only available about female dispersal patterns. The current study aimed to address this problem and to fully assess the extent of current gene flow (nDNA) and reproductive exchange among selected wild populations of two species of carp (Henicorhynchus spp.) of high economic importance in the MRB using combined mtDNA and nDNA markers. In combination, the data can be used to define effective management units for each species. In general, nDNA diversity for H. lobatus (with average allelic richness (A) 7.56 and average heterozygosity (Ho) 0.61) was very similar to that identified for H. siamensis (A = 6.81 and Ho = 0.75). Both mud carp species show significant but low FST estimates among populations as a result of lower genetic diversity among sampled populations compared with genetic diversity within populations that may potentially mask any 'real' population structure. Overall, population genetic structure patterns from mtDNA and nDNA in both Henicorhynchus species were largely congruent. Different population structures however, were identified for the two Henicorhynchus species across the same geographical area. Apparent co-similarity in morphology and co-distribution of these two relatively closely related species does not apparently imply parallel evolutionary histories. Differences in each species population structure likely reflect historical drainage rearrangement of the Mekong River. The data indicate that H. siamensis is likely to have occupied the Mekong system for much longer than has H. lobatus in the past. Two divergent stocks were identified for H. lobatus in the MRB below the Khone Falls while a single stock had been evident in the earlier mtDNA study. This suggests that the two Henicorhynchus species may possess different life history traits and that different patterns of gene flow has likely influenced modern genetic structure in these close congeners. In combination, results of the earlier mtDNA and the current study have implications for effective management of both Henicorhynchus species across the MRB. Currently, both species are essentially treated as a single management unit in this region. This strategy may be appropriate for H. lobatus as a single stock was evident in the main stream of the MRB, but may not be appropriate for H. siamensis as more than a single stock was identified across the same range for this species. Management strategies should consider this difference to conserve overall biodiversity (local discrete populations) and this will include maintaining natural habitat and migration pathways, provision of fish sanctuaries (refuges) and may also require close monitoring of any stock declines, a signal that may require effective recovery strategies.
Resumo:
BACKGROUND Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS) is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. RESULTS We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs) in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG) 09 of the apple genome. CONCLUSION We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.
Resumo:
Background The majority of introns in gene transcripts are found within the coding sequences (CDSs). A small but significant fraction of introns are also found to reside within the untranslated regions (5′UTRs and 3′UTRs) of expressed sequences. Alignment of the whole genome and expressed sequence tags (ESTs) of the model plant Arabidopsis thaliana has identified introns residing in both coding and non-coding regions of the genome. Results A bioinformatic analysis revealed some interesting observations: (1) the density of introns in 5′UTRs is similar to that in CDSs but much higher than that in 3′UTRs; (2) the 5′UTR introns are preferentially located close to the initiating ATG codon; (3) introns in the 5′UTRs are, on average, longer than introns in the CDSs and 3′UTRs; and (4) 5′UTR introns have a different nucleotide composition to that of CDs and 3′UTR introns. Furthermore, we show that the 5′UTR intron of the A. thaliana EFIα-A3 gene affects the gene expression and the size of the 5′UTR intron influences the level of gene expression. Conclusion Introns within the 5′UTR show specific features that distinguish them from introns that reside within the coding sequence and the 3′UTR. In the EFIα-A3 gene, the presence of a long intron in the 5′UTR is sufficient to enhance gene expression in plants in a size dependent manner.