203 resultados para DEPTH DOSE DISTRIBUTIONS
Resumo:
- Background Nilotinib and dasatinib are now being considered as alternative treatments to imatinib as a first-line treatment of chronic myeloid leukaemia (CML). - Objective This technology assessment reviews the available evidence for the clinical effectiveness and cost-effectiveness of dasatinib, nilotinib and standard-dose imatinib for the first-line treatment of Philadelphia chromosome-positive CML. - Data sources Databases [including MEDLINE (Ovid), EMBASE, Current Controlled Trials, ClinicalTrials.gov, the US Food and Drug Administration website and the European Medicines Agency website] were searched from search end date of the last technology appraisal report on this topic in October 2002 to September 2011. - Review methods A systematic review of clinical effectiveness and cost-effectiveness studies; a review of surrogate relationships with survival; a review and critique of manufacturer submissions; and a model-based economic analysis. - Results Two clinical trials (dasatinib vs imatinib and nilotinib vs imatinib) were included in the effectiveness review. Survival was not significantly different for dasatinib or nilotinib compared with imatinib with the 24-month follow-up data available. The rates of complete cytogenetic response (CCyR) and major molecular response (MMR) were higher for patients receiving dasatinib than for those with imatinib for 12 months' follow-up (CCyR 83% vs 72%, p < 0.001; MMR 46% vs 28%, p < 0.0001). The rates of CCyR and MMR were higher for patients receiving nilotinib than for those receiving imatinib for 12 months' follow-up (CCyR 80% vs 65%, p < 0.001; MMR 44% vs 22%, p < 0.0001). An indirect comparison analysis showed no difference between dasatinib and nilotinib for CCyR or MMR rates for 12 months' follow-up (CCyR, odds ratio 1.09, 95% CI 0.61 to 1.92; MMR, odds ratio 1.28, 95% CI 0.77 to 2.16). There is observational association evidence from imatinib studies supporting the use of CCyR and MMR at 12 months as surrogates for overall all-cause survival and progression-free survival in patients with CML in chronic phase. In the cost-effectiveness modelling scenario, analyses were provided to reflect the extensive structural uncertainty and different approaches to estimating OS. First-line dasatinib is predicted to provide very poor value for money compared with first-line imatinib, with deterministic incremental cost-effectiveness ratios (ICERs) of between £256,000 and £450,000 per quality-adjusted life-year (QALY). Conversely, first-line nilotinib provided favourable ICERs at the willingness-to-pay threshold of £20,000-30,000 per QALY. - Limitations Immaturity of empirical trial data relative to life expectancy, forcing either reliance on surrogate relationships or cumulative survival/treatment duration assumptions. - Conclusions From the two trials available, dasatinib and nilotinib have a statistically significant advantage compared with imatinib as measured by MMR or CCyR. Taking into account the treatment pathways for patients with CML, i.e. assuming the use of second-line nilotinib, first-line nilotinib appears to be more cost-effective than first-line imatinib. Dasatinib was not cost-effective if decision thresholds of £20,000 per QALY or £30,000 per QALY were used, compared with imatinib and nilotinib. Uncertainty in the cost-effectiveness analysis would be substantially reduced with better and more UK-specific data on the incidence and cost of stem cell transplantation in patients with chronic CML. - Funding The Health Technology Assessment Programme of the National Institute for Health Research.
Resumo:
We describe a novel approach to treatment planning for focal brachytherapy utilizing a biologically based inverse optimization algorithm and biological imaging to target an ablative dose at known regions of significant tumour burden and a lower, therapeutic dose to low risk regions.
Resumo:
We propose a family of multivariate heavy-tailed distributions that allow variable marginal amounts of tailweight. The originality comes from introducing multidimensional instead of univariate scale variables for the mixture of scaled Gaussian family of distributions. In contrast to most existing approaches, the derived distributions can account for a variety of shapes and have a simple tractable form with a closed-form probability density function whatever the dimension. We examine a number of properties of these distributions and illustrate them in the particular case of Pearson type VII and t tails. For these latter cases, we provide maximum likelihood estimation of the parameters and illustrate their modelling flexibility on simulated and real data clustering examples.
Resumo:
In this paper, we examine approaches to estimate a Bayesian mixture model at both single and multiple time points for a sample of actual and simulated aerosol particle size distribution (PSD) data. For estimation of a mixture model at a single time point, we use Reversible Jump Markov Chain Monte Carlo (RJMCMC) to estimate mixture model parameters including the number of components which is assumed to be unknown. We compare the results of this approach to a commonly used estimation method in the aerosol physics literature. As PSD data is often measured over time, often at small time intervals, we also examine the use of an informative prior for estimation of the mixture parameters which takes into account the correlated nature of the parameters. The Bayesian mixture model offers a promising approach, providing advantages both in estimation and inference.
Resumo:
In competitive combat sporting environments like boxing, the statistics on a boxer's performance, including the amount and type of punches thrown, provide a valuable source of data and feedback which is routinely used for coaching and performance improvement purposes. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through both a multi-class SVM and Random Forest classifiers. A coarse-to-fine hierarchical SVM classifier is presented based on prior knowledge of boxing punches. This framework has been applied to shadow boxing image sequences taken at the Australian Institute of Sport with 8 elite boxers. Results demonstrate the effectiveness of the proposed approach, with the hierarchical SVM classifier yielding a 96% accuracy, signifying its suitability for analysing athletes punches in boxing bouts.
Resumo:
The early and accurate assessment of burns is essential to inform patient treatment regimens; however, this first critical step in clinical practice remains a challenge for specialist burns clinicians worldwide. In this regard, protein biomarkers are a potential adjunct diagnostic tool to assist experienced clinical judgement. Free circulating haemoglobin has previously shown some promise as an indicator of burn depth in a murine animal model. Using blister fluid collected from paediatric burn patients, haemoglobin abundance was measured using semi-quantitative Western blot and immunoassays. Although a trend was observed in which haemoglobin abundance increased with burn wound severity, several patient samples deviated significantly from this trend. Further, it was found that haemoglobin concentration decreased significantly when whole cells, cell debris and fibrinous matrix was removed from the blister fluid by centrifugation; although the relationship to depth was still present. Statistical analyses showed that haemoglobin abundance in the fluid was more strongly related to the time between injury and sample collection and the time taken for spontaneous re-epithelialisation. We hypothesise that prolonged exposure to the blister fluid microenvironment may result in an increased haemoglobin abundance due to erythrocyte lysis, and delayed wound healing
Resumo:
Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. © 2015 The Authors.
Resumo:
Intermittent microwave convective (IMCD) drying is an advanced drying technology that improves both energy efficiency and food quality during the drying of food materials. Despite numerous experimental studies available for IMCD, there is no complete multiphase porous media model available to describe the process. A multiphase porous media model considering liquid water, gases and the solid matrix inside the food during drying can provide in depth understanding of IMCD. In this article, firstly a multiphase porous media model was developed for IMCD. Then the model is validated against experimental data by comparing moisture content and temperature distributions after each heating and tempering periods. The profile of vapour pressures and evaporation during IMCD are presented and discussed. The relative contribution of water and vapour fluxes due to gas pressure and diffusion demonstrated that the fluxes due are relatively higher in IMCD compared to convection drying and this makes the IMCD faster.