201 resultados para Color vision.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent interest in affect and the body have mobilised a contemporary review of aesthetics and phenomenology within architecture to unpack how environments affect spatial experience. Emerging spatial studies within the neurosciences, and their implications for architectural research as raised by architectural theorists has been well supported by a raft of scientists and institutions. Although there has been some headway in spatial studies of the vision impaired (Cattaneo et al., 2011) to understand the role of their non-visual systems in assisting navigation and location, little is discussed in terms of their other abilities in sensing particular qualities of space which impinge upon emotion and wellbeing. This research explores, through published studies and constructed spatial interviews, the affective perception of the vision impaired and how further interplay between this research and the architectural field can contribute new knowledge regarding space and affect. The research aims to provide background of current and potential cross disciplinary research and highlight the role wearable technologies can play in enhancing knowledge of affective spatial experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To develop and test a custom-built instrument to simultaneously assess tear film surface quality (TFSQ) and subjective vision score (SVS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robotic vision is limited by line of sight and onboard camera capabilities. Robots can acquire video or images from remote cameras, but processing additional data has a computational burden. This paper applies the Distributed Robotic Vision Service, DRVS, to robot path planning using data outside line-of-sight of the robot. DRVS implements a distributed visual object detection service to distributes the computation to remote camera nodes with processing capabilities. Robots request task-specific object detection from DRVS by specifying a geographic region of interest and object type. The remote camera nodes perform the visual processing and send the high-level object information to the robot. Additionally, DRVS relieves robots of sensor discovery by dynamically distributing object detection requests to remote camera nodes. Tested over two different indoor path planning tasks DRVS showed dramatic reduction in mobile robot compute load and wireless network utilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detect and Avoid (DAA) technology is widely acknowledged as a critical enabler for unsegregated Remote Piloted Aircraft (RPA) operations, particularly Beyond Visual Line of Sight (BVLOS). Image-based DAA, in the visible spectrum, is a promising technological option for addressing the challenges DAA presents. Two impediments to progress for this approach are the scarcity of available video footage to train and test algorithms, in conjunction with testing regimes and specifications which facilitate repeatable, statistically valid, performance assessment. This paper includes three key contributions undertaken to address these impediments. In the first instance, we detail our progress towards the creation of a large hybrid collision and near-collision encounter database. Second, we explore the suitability of techniques employed by the biometric research community (Speaker Verification and Language Identification), for DAA performance optimisation and assessment. These techniques include Detection Error Trade-off (DET) curves, Equal Error Rates (EER), and the Detection Cost Function (DCF). Finally, the hybrid database and the speech-based techniques are combined and employed in the assessment of a contemporary, image based DAA system. This system includes stabilisation, morphological filtering and a Hidden Markov Model (HMM) temporal filter.