329 resultados para Collectivité viable
Resumo:
Aim Facilities in retirement villages form a supportive environment for older residents. The purpose of this paper is to investigate the provision of these facilities in retirement villages, which are regarded as a viable accommodation option for the ever-increasing ageing population in Australia. Method A content analysis of 124 retirement villages operated by 22 developers in Queensland and South Australia was conducted for the research purpose. Results The most widely provided facilities are community centres, libraries, barbeque facilities, hairdressers/salons and billiards/snooker/pool tables. Commercial operators provide more facilities than not-for-profit organisations and larger retirement villages normally have more facilities due to the economics of scale involved. Conclusions The results of the study provide a useful reference for providing facilities within retirement villages that may support the quality lifestyles for the older residents.
Resumo:
Arguing for the importance of understanding the conditions under which certain forms of the social subject become visible and viable, this chapter conceptualises the current educational focus on ‘creativity’ as a technology of governmentality that has arisen from the perceived need for governing authorities to manage and responsibilise populations for the pervasive uncertainties of the global economy. With reference to the document, Tough Choices or Tough Times, a publication of the National Center on Education and the Economy in the United States, we show how creativity has been reframed as a programmable capacity of the modern student, citizen and worker primarily because it is considered an indispensible source of enterprise and innovation. Education and family life are an integral part of this bio-politics and the ongoing ‘economisation’ of social life. Our concern is that this reductionist understanding of creativity precludes other transgressive and culturally enriching creativities that represent the infinite range of subjectivities associated with imaginative human capacity and activity. It is vital therefore that educational research renders this historical process transparent and opens spaces for more socially inclusive, sustainable and productive ways of being such as those indicated by the three respondees.
Resumo:
Numerous research studies have evaluated whether distance learning is a viable alternative to traditional learning methods. These studies have generally made use of cross-sectional surveys for collecting data, comparing distance to traditional learners with intent to validate the former as a viable educational tool. Inherent fundamental differences between traditional and distance learning pedagogies, however, reduce the reliability of these comparative studies and constrain the validity of analyses resulting from this analytical approach. This article presents the results of a research project undertaken to analyze expectations and experiences of distance learners with their degree programs. Students were given surveys designed to examine factors expected to affect their overall value assessment of their distance learning program. Multivariate statistical analyses were used to analyze the correlations among variables of interest to support hypothesized relationships among them. Focusing on distance learners overcomes some of the limitations with assessments that compare off- and on-campus student experiences. Evaluation and modeling of distance learner responses on perceived value for money of the distance education they received indicate that the two most important influences are course communication requirements, which had a negative effect, and course logistical simplicity, which revealed a positive effect. Combined, these two factors accounted for approximately 47% of the variability in perceived value for money of the educational program of sampled students. A detailed focus on comparing expectations with outcomes of distance learners complements the existing literature dominated by comparative studies of distance and nondistance learners.
Resumo:
This edition of ALARj has a focus on the contribution of action learning and action research to the development of community services, particularly nonprofits. The landscape of community services has been changing rapidly in recent decades, and can be typified by the notion of complexity. Complexity in the nature of issues that services seek to respond to, complexity in the policy environment and systems of support that have tended to silo and compartmentalise problems and people, and complexity in the institutional location non-profit services occupy in ‘helping’ those who are seen as ‘in need’ or marginalised. In addition to being typified by complexity the environment in which community services are located is dynamic, undergoing profound and ongoing change as neo-liberal approaches to understanding and responding to human need, which emphasise the individualisation of risk, and market principles such as choice, competition and innovation, drive social policy. How can long held values of empowerment, care, inclusivity and benefit to individuals and communities have expression in community services as they grapple with the challenges of being viable and relevant in such a dynamically changing environment? This edition brings together a range of contributions which speak to these challenges. The thematic through these is that processes are needed which engage services and communities in ongoing processes of inquiry about how they can best proceed in contexts typified by complexity and change. Action learning and action research can provide processes of this character.
Resumo:
Fisheries and aquaculture are important for food security, income generation and are critical to long term sustainability of many countries. Freshwater prawns have been harvested in the streams and creeks in Vanuatu, however due to over-exploitation catches have declined in recent years. To satisfy high demand for this product, Vanuatu government intends to establish economically viable small-scale aquaculture industries. The current project showed that wild Macrobrachium lar in Vanuatu constitute a single population for management purposes and that M. rosenbergii grows much faster than M. lar in simple pond grow-out systems, hence is a better species for culture in Vanuatu.
Resumo:
Production of recycled concrete aggregates (RCA) from construction and demolition (C&D) waste has become popular all over the world since the availability of land spaces are limited to dispose. Therefore it is important to seek alternative applications for RCA. The use of RCA in base and sub-base layers in granular pavement is a viable solution. In mechanistic pavement design, rutting (permanent deformation) is considered as the major failure mechanisms of the pavement. The rutting is the accumulation of permanent deformation of pavement layers caused by the repetitive vehicle load. In Queensland, Australia, it is accepted to have the maximum of 20% of reclaimed asphalt pavement (RAP) in RCA and therefore, it is important to investigate the effect of RAP on the permanent deformation properties of RCA. In this study, a series of repeated load triaxial (RLT) tests were conducted on RCA blended with different percentage of RAP to investigate the permanent deformation and resilient modulus properties of RCA. The vertical deformation and resilient modulus values were used to determine the response of RCA for the cyclic loading under standard pressure and loading conditions.
Resumo:
Built environment design around the world faces a number of 21st Century challenges such as rising urban heat island effect and rising pollution, which are further worsened by consequences of climate change and increasing urban populations. Such challenges have caused cities around the globe to investigate options that can help to significantly reduce the environmental pressures from current and future development, requiring new areas of innovation. One such area is ‘Biophilic Urbanism’, which refers to the use of natural elements as design features in urban centres to assist efforts to address climate change issues in rapidly growing economies. Singapore is an illustration of a thriving economy that exemplifies the value of embedding nature into its built environment. The significance of urban green space has been recognised in Singapore as early as the 1960s when Lee Kuan Yew embarked on the ‘Garden City’ concept. 50 years later, Singapore has achieved its Garden City goal and is now entering a new era of sustainability, to create a ‘City in a Garden’. Although the economics of such efforts is not entirely understood, the city of Singapore has continued to pursue visions of becoming a biophilic city. Indeed, there appears to be important lessons to be learned from a city that has challenged the preconceived notion that protecting vegetation in a city is not economically viable. Hence, this paper will discuss the case study of Singapore to highlight the drivers, along with the economic considerations identified along the way. The conclusions have implications for expanding the notion of biophilic urbanism, particularly in the Australian context by discussing the lessons learned from this city. The research is part of Sustainable Built Environment National Research Centre, and has been developed in collaboration with the Curtin University Sustainability Policy Institute.
Resumo:
Time- and position-resolved synchrotron small angle X-ray scattering data were acquired from samples of two Australian coal seams: Bulli seam (Bulli 4, Ro=1.42%, Sydney Basin), which naturally contains CO2 and Baralaba seam (Ro=0.67%, Bowen Basin), a potential candidate for sequestering CO2. This experimental approach has provided unique, pore-size-specific insights into the kinetics of CO2 sorption in the micro- and small mesopores (diameter 5 to 175 Å) and the density of the sorbed CO2 at reservoir-like conditions of temperature and hydrostatic pressure. For both samples, at pressures above 5 bar, the density of CO2 confined in pores was found to be uniform, with no densification in near-wall regions. In the Bulli 4 sample, CO2 first flooded the slit pores between polyaromatic sheets. In the pore-size range analysed, the confined CO2 density was close to that of the free CO2. The kinetics data are too noisy for reliable quantitative analysis, but qualitatively indicate faster kinetics in mineral-matter-rich regions. In the Baralaba sample, CO2 preferentially invaded the smallest micropores and the confined CO2 density was up to five times that of the free CO2. Faster CO2 sorption kinetics was found to be correlated with higher mineral matter content but, the mineral-matter-rich regions had lower-density CO2 confined in their pores. Remarkably, the kinetics was pore-size dependent, being faster for smaller pores. These results suggest that injection into the permeable section of an interbedded coal-clastic sequence could provide a viable combination of reasonable injectivity and high sorption capacity.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
The contemporary default materials for multi-storey buildings – namely concrete and steel – are all significant generators of carbon and the use of timber products provides a technically, economically and environmentally viable alternative. In particular, timber’s sustainability can drive increased use and subsequent evolution of the Blue economy as a new economic model. National research to date, however, indicates a resistance to the uptake of timber technologies in Australia. To investigate this further, a preliminary study involving a convenience sample of 15 experts was conducted to identify the main barriers involved in the use of timber frames in multi-storey buildings. A closed-ended questionnaire survey involving 74 experienced construction industry participants was then undertaken to rate the relative importance of the barriers. The survey confirmed the most significant barriers to be a perceived increase in maintenance costs and fire risk, together with a limited awareness of the emerging timber technologies available. It is expected that the results will benefit government and the timber industry, contributing to environmental improvement by developing strategies to increase the use of timber technologies in multi-storey buildings by countering perceived barriers in the Australian context.
Resumo:
There are many attractive alternatives to produce chemicals similar to those currently produced from fossil fuel resources. The most viable renewable resource of fixed carbon is biomass. This paper examines processing conditions for the production and recovery of furanics from bagasse as well as bagasse pulp. It is shown that bio-oil consisting mainly of furanics (~84% chloromethly furfural) may be obtained in yields of ~78% and ~87% by weight from bagasse and bagasse pulp respectively using a biphasic acid hydrolysis system. The biphasic system consists of an organic layer of dichloroethane and an aqueous phase of concentrated hydrochloric acid. Generally the lower the impurity content and the higher the cellulose content, the higher the furanics yield.
Resumo:
The dicoordinated borinium ion, dihydroxyborinium, B(OH)(2)(+) is generated from methyl boronic acid CH3B(OH)(2) by dissociative electron ionization and its connectivity confirmed by collisional activation. Neutralization-reionization (NR) experiments on this ion indicate that the neutral B(OH)(2) radical is a viable species in the gas phase. Both vertical neutralization of B(OH)(2)(+) and reionization of B(OH)(2) in the NR experiment are, however, associated with particularly unfavorable Franck-Condon factors. The differences in adiabatic and vertical electron transfer behavior can be traced back to a particular pi stabilization of the cationic species compared to the sp(2)-type neutral radical. Thermochemical data on several neutral and cationic boron compounds are presented based on calculations performed at the G2 level of theory.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
It is well established that calcitonin is a potent inhibitor of bone resorption; however, a physiological role for calcitonin acting through its cognate receptor, the calcitonin receptor (CTR), has not been identified. Data from previous genetically modified animal models have recognized a possible role for calcitonin and the CTR in controlling bone formation; however, interpretation of these data are complicated, in part because of their mixed genetic background. Therefore, to elucidate the physiological role of the CTR in calcium and bone metabolism, we generated a viable global CTR knockout (KO) mouse model using the Cre/loxP system, in which the CTR is globally deleted by >94% but <100%. Global CTRKOs displayed normal serum ultrafiltrable calcium levels and a mild increase in bone formation in males, showing that the CTR plays a modest physiological role in the regulation of bone and calcium homeostasis in the basal state in mice. Furthermore, the peak in serum total calcium after calcitriol [1,25(OH)2D3]-induced hypercalcemia was substantially greater in global CTRKOs compared with controls. These data provide strong evidence for a biological role of the CTR in regulating calcium homeostasis in states of calcium stress.
Resumo:
Purpose The purpose of this review is to address important methodological issues related to conducting accelerometer-based assessments of physical activity in free-living individuals. Methods We review the extant scientific literature for empirical information related to the following issues: product selection, number of accelerometers needed, placement of accelerometers, epoch length, and days of monitoring required to estimate habitual physical activity. We also discuss the various options related to distributing and collecting monitors and strategies to enhance compliance with the monitoring protocol. Results No definitive evidence exists currently to indicate that one make and model of accelerometer is more valid and reliable than another. Selection of accelerometer therefore remains primarily an issue of practicality, technical support, and comparability with other studies. Studies employing multiple accelerometers to estimate energy expenditure report only marginal improvements in explanatory power. Accelerometers are best placed on hip or the lower back. Although the issue of epoch length has not been studied in adults, the use of count cut points based on 1-min time intervals maybe inappropriate in children and may result in underestimation of physical activity. Among adults, 3–5 d of monitoring is required to reliably estimate habitual physical activity. Among children and adolescents, the number of monitoring days required ranges from 4 to 9 d, making it difficult to draw a definitive conclusion for this population. Face-to-face distribution and collection of accelerometers is probably the best option in field-based research, but delivery and return by express carrier or registered mail is a viable option. Conclusion Accelerometer-based activity assessments requires careful planning and the use of appropriate strategies to increase compliance.