198 resultados para Calendar, Julian.
Resumo:
Objective To determine trends in the incidence of foot-related hospitalisation and amputation amongst persons with diabetes in Queensland (Australia) between 2005 and 2010 that coincided with changes in state-wide ambulatory diabetic foot-related complication management. Methods All data from cases admitted for the principal reason of diabetes foot-related hospitalisation or amputation in Queensland from 2005–2010 were obtained from the Queensland Hospital Admitted Patient Data Collection dataset. Incidence rates for foot-related hospitalisation (admissions, bed days used) and amputation (total, minor, major) cases amongst persons with diabetes were calculated per 1,000 person-years with diabetes (diabetes population) and per 100,000 person-years (general population). Age-sex standardised incidence and age-sex adjusted Poisson regression models were also calculated for the general population. Results There were 4,443 amputations, 24,917 hospital admissions and 260,085 bed days used for diabetes foot-related complications in Queensland. Incidence per 1,000 person-years with diabetes decreased from 2005 to 2010: 43.0% for hospital admissions (36.6 to 20.9), 40.1% bed days (391 to 234), 40.0% total amputations (6.47 to 3.88), 45.0% major amputations (2.18 to 1.20), 37.5% minor amputations (4.29 to 2.68) (p < 0.01 respectively). Age-sex standardised incidence per 100,000 person-years in the general population also decreased from 2005 to 2010: 23.3% hospital admissions (105.1 to 80.6), 19.5% bed days (1,122 to 903), 19.3% total amputations (18.57 to 14.99), 26.4% major amputations (6.26 to 4.61), 15.7% minor amputations (12.32 to 10.38) (p < 0.01 respectively). The age-sex adjusted incidence rates per calendar year decreased in the general population (rate ratio (95% CI)); hospital admissions 0.949 (0.942–0.956), bed days 0.964 (0.962–0.966), total amputations 0.962 (0.946–0.979), major amputations 0.945 (0.917–0.974), minor amputations 0.970 (0.950–0.991) (p < 0.05 respectively). Conclusions There were significant reductions in the incidence of foot-related hospitalisation and amputation amongst persons with diabetes in the population of Queensland over a recent six-year period.
Resumo:
Predicting temporal responses of ecosystems to disturbances associated with industrial activities is critical for their management and conservation. However, prediction of ecosystem responses is challenging due to the complexity and potential non-linearities stemming from interactions between system components and multiple environmental drivers. Prediction is particularly difficult for marine ecosystems due to their often highly variable and complex natures and large uncertainties surrounding their dynamic responses. Consequently, current management of such systems often rely on expert judgement and/or complex quantitative models that consider only a subset of the relevant ecological processes. Hence there exists an urgent need for the development of whole-of-systems predictive models to support decision and policy makers in managing complex marine systems in the context of industry based disturbances. This paper presents Dynamic Bayesian Networks (DBNs) for predicting the temporal response of a marine ecosystem to anthropogenic disturbances. The DBN provides a visual representation of the problem domain in terms of factors (parts of the ecosystem) and their relationships. These relationships are quantified via Conditional Probability Tables (CPTs), which estimate the variability and uncertainty in the distribution of each factor. The combination of qualitative visual and quantitative elements in a DBN facilitates the integration of a wide array of data, published and expert knowledge and other models. Such multiple sources are often essential as one single source of information is rarely sufficient to cover the diverse range of factors relevant to a management task. Here, a DBN model is developed for tropical, annual Halophila and temperate, persistent Amphibolis seagrass meadows to inform dredging management and help meet environmental guidelines. Specifically, the impacts of capital (e.g. new port development) and maintenance (e.g. maintaining channel depths in established ports) dredging is evaluated with respect to the risk of permanent loss, defined as no recovery within 5 years (Environmental Protection Agency guidelines). The model is developed using expert knowledge, existing literature, statistical models of environmental light, and experimental data. The model is then demonstrated in a case study through the analysis of a variety of dredging, environmental and seagrass ecosystem recovery scenarios. In spatial zones significantly affected by dredging, such as the zone of moderate impact, shoot density has a very high probability of being driven to zero by capital dredging due to the duration of such dredging. Here, fast growing Halophila species can recover, however, the probability of recovery depends on the presence of seed banks. On the other hand, slow growing Amphibolis meadows have a high probability of suffering permanent loss. However, in the maintenance dredging scenario, due to the shorter duration of dredging, Amphibolis is better able to resist the impacts of dredging. For both types of seagrass meadows, the probability of loss was strongly dependent on the biological and ecological status of the meadow, as well as environmental conditions post-dredging. The ability to predict the ecosystem response under cumulative, non-linear interactions across a complex ecosystem highlights the utility of DBNs for decision support and environmental management.
Resumo:
Background The leading causes of morbidity and mortality for people in high-income countries living with HIV are now non-AIDS malignancies, cardiovascular disease and other non-communicable diseases associated with ageing. This protocol describes the trial of HealthMap, a model of care for people with HIV (PWHIV) that includes use of an interactive shared health record and self-management support. The aims of the HealthMap trial are to evaluate engagement of PWHIV and healthcare providers with the model, and its effectiveness for reducing coronary heart disease risk, enhancing self-management, and improving mental health and quality of life of PWHIV. Methods/Design The study is a two-arm cluster randomised trial involving HIV clinical sites in several states in Australia. Doctors will be randomised to the HealthMap model (immediate arm) or to proceed with usual care (deferred arm). People with HIV whose doctors are randomised to the immediate arm receive 1) new opportunities to discuss their health status and goals with their HIV doctor using a HealthMap shared health record; 2) access to their own health record from home; 3) access to health coaching delivered by telephone and online; and 4) access to a peer moderated online group chat programme. Data will be collected from participating PWHIV (n = 710) at baseline, 6 months, and 12 months and from participating doctors (n = 60) at baseline and 12 months. The control arm will be offered the HealthMap intervention at the end of the trial. The primary study outcomes, measured at 12 months, are 1) 10-year risk of non-fatal acute myocardial infarction or coronary heart disease death as estimated by a Framingham Heart Study risk equation; and 2) Positive and Active Engagement in Life Scale from the Health Education Impact Questionnaire (heiQ). Discussion The study will determine the viability and utility of a novel technology-supported model of care for maintaining the health and wellbeing of people with HIV. If shown to be effective, the HealthMap model may provide a generalisable, scalable and sustainable system for supporting the care needs of people with HIV, addressing issues of equity of access. Trial registration Universal Trial Number (UTN) U111111506489; ClinicalTrial.gov Id NCT02178930 submitted 29 June 2014