250 resultados para CAROTID-BODY
Resumo:
Patients with anorexia nervosa (AN) have low body weight, depleted fat stores, and reduced muscle mass. Both total body potassium (TBK) and bioelectrical impedance analysis (BIA) have been used to measure the body composition of these patients.1–4 Whereas TBK accurately measures body cell mass, the metabolically active compartment of the body, whole body potassium counters are expensive and not readily available. The purpose of this study was to investigate the potential of multiple frequency BIA (MFBIA) to monitor changes in body compartments in patients with AN.
Resumo:
Malnutrition is a common problem in children with end-stage liver disease (ESLD), and accurate assessment of nutritional status is essential in managing these children. In a retrospective study, we compared nutritional assessment by anthropometry with that by body composition. We analyzed all consecutive measurements of total body potassium (TBK, n = 186) of children less than 3 years old with ESLD awaiting transplantation found in our database. The TBK values obtained by whole body counting of 40K were compared with reference TRK values of healthy children. The prevalence of malnutrition, as assessed by weight (weight Z score < -2) was 28%, which was significantly lower (chi-square test, p < 0.0001) than the prevalence of malnutrition (76%) assessed by TBK (< 90% of expected TRK for age). These results demonstrated that body weight underestimated the nutritional deficit and stressed the importance of measuring body composition as part of assessing nutritional status of children with ESLD.
Resumo:
Objective: To investigate measures aimed at defining the nutritional status of cystic fibrosis (CF) populations, this study compared standard anthropometric measurements and total body potassium (TBK) as indicators of malnutrition. Methods: Height, weight, and TBK measurements of 226 children with CF from Royal Children's Hospital, Brisbane, Australia, were analyzed. Z scores for height for age, weight for age, and weight for height were analyzed by means of the National Centre for Health Statistics reference. TBK was measured by means of whole body counting and compared with predicted TBK for age. Two criteria were evaluated with respect to malnutrition: (1) a z score < -2.0 and (2) a TBK for age <80% of predicted. Results: Males and females with CF had lower mean height-for-age and weight-for-age z scores than the National Centre for Health Statistics reference (P < .01), but mean weight-for-height z score was not significantly different. There were no significant gender differences. According to anthropometry, only 7.5% of this population were underweight and 7.6% were stunted. However, with TBK as an indicator of nutritional status, 29.9% of males and 22.0% of females were malnourished. Conclusion: There are large differences in the percentage of patients with CF identified as malnourished depending on whether anthropometry or body composition data are used as the nutritional indicator. At an individual level, weight-based indicators are not sensitive indicators of suboptimal nutritional status in CF, significantly underestimating the extent of malnutrition. Current recommendations in which anthropometry is used as the indicator of malnutrition in CF should be revised.
Resumo:
This is a theoretical investigation seeking to learn more about architecture by looking at architectural practice through another discipline. In this research architecture is investigated by examining its relationship with bodies through performance and theatre set design. This thesis aims to build on existing architectural theory, in which an absence of discourse on the body has been identified, by analysing representations of architecture and the body in performance. The research specifically examines the relationship between the body, architecture and authority in performance through the analysis of several performance works.
Resumo:
The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.
Resumo:
Cardiovascular disease is the leading causes of death in the developed world. Wall shear stress (WSS) is associated with the initiation and progression of atherogenesis. This study combined the recent advances in MR imaging and computational fluid dynamics (CFD) and evaluated the patient-specific carotid bifurcation. The patient was followed up for 3 years. The geometry changes (tortuosity, curvature, ICA/CCA area ratios, central to the cross-sectional curvature, maximum stenosis) and the CFD factors (Velocity distribute, Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI)) were compared at different time points.The carotid stenosis was a slight increase in the central to the cross-sectional curvature, and it was minor and variable curvature changes for carotid centerline. The OSI distribution presents ahigh-values in the same region where carotid stenosis and normal border, indicating complex flow and recirculation.The significant geometric changes observed during the follow-up may also cause significant changes in bifurcation hemodynamics.
Resumo:
Background: Biomechanical stress analysis has been used for plaque vulnerability assessment. The presence of plaque hemorrhage (PH) is a feature of plaque vulnerability and is associated with thromboembolic ischemic events. The purpose of the present study was to use finite element analysis (FEA) to compare the stress profiles of hemorrhagic and non-hemorrhagic profiles. Methods and Results: Forty-five consecutive patients who had suffered a cerebrovascular ischemic event with an underlying carotid artery disease underwent high-resolution magnetic resonance imaging (MRI) of their symptomatic carotid artery in a 1.5-T MRI system. Axial images were manually segmented for various plaque components and used for FEA. Maximum critical stress (M-CstressSL) for each slice was determined. Within a plaque, the maximum M-CstressSL for each slice of a plaque was selected to represent the maximum critical stress of that plaque (M-CstressPL) and used to compare hemorrhagic and non-hemorrhagic plaques. A total of 62% of plaques had hemorrhage. It was observed that plaques with hemorrhage had significantly higher stress (M-CstressPL) than plaques without PH (median [interquartile range]: 315 kPa [247-434] vs. 200 kPa [171-282], P=0.003). Conclusions: Hemorrhagic plaques have higher biomechanical stresses than non-hemorrhagic plaques. MRI-based FEA seems to have the potential to assess plaque vulnerability.
Resumo:
Background: Inflammation and biomechanical factors have been associated with the development of vulnerable atherosclerotic plaques. Lipid-lowering therapy has been shown to be effective in stabilizing them by reducing plaque inflammation. Its effect on arterial wall strain, however, remains unknown. The aim of the present study was to investigate the role of high- and low-dose lipid-lowering therapy using an HMG-CoA reductase inhibitor, atorvastatin, on arterial wall strain. Methods and Results: Forty patients with carotid stenosis >40% were successfully followed up during the Atorvastatin Therapy: Effects on Reduction Of Macrophage Activity (ATHEROMA; ISRCTN64894118) Trial. All patients had plaque inflammation as shown by intraplaque accumulation of ultrasmall super paramagnetic particles of iron oxide on magnetic resonance imaging at baseline. Structural analysis was performed and change of strain was compared between high- and low-dose statin at 0 and 12 weeks. There was no significant difference in strain between the 2 groups at baseline (P=0.6). At 12 weeks, the maximum strain was significantly lower in the 80-mg group than in the 10-mg group (0.085±0.033 vs. 0.169±0.084; P=0.001). A significant reduction (26%) of maximum strain was observed in the 80-mg group at 12 weeks (0.018±0.02; P=0.01). Conclusions: Aggressive lipid-lowering therapy is associated with a significant reduction in arterial wall strain. The reduction in biomechanical strain may be associated with reductions in plaque inflammatory burden.
Resumo:
Stroke is one of the leading causes of death in the world, resulting mostly from the sudden ruptures of atherosclerosis carotid plaques. Until now, the exact plaque rupture mechanism has not been fully understood, and also the plaque rupture risk stratification. The advanced multi-spectral magnetic resonance imaging (MRI) has allowed the plaque components to be visualized in-vivo and reconstructed by computational modeling. In the study, plaque stress analysis using fully coupled fluid structure interaction was applied to 20 patients (12 symptomatic and 8 asymptomatic) reconstructed from in-vivo MRI, followed by a detailed biomechanics analysis, and morphological feature study. The locally extreme stress conditions can be found in the fibrous cap region, 85% at the plaque shoulder based on the present study cases. Local maximum stress values predicted in the plaque region were found to be significantly higher in symptomatic patients than that in asymptomatic patients (200±43. kPa vs. 127±37. kPa, p=0.001). Plaque stress level, defined by excluding 5% highest stress nodes in the fibrous cap region based on the accumulative histogram of stress experienced on the computational nodes in the fibrous cap, was also significantly higher in symptomatic patients than that in asymptomatic patients (154±32. kPa vs. 111±23. kPa, p<0.05). Although there was no significant difference in lipid core size between the two patient groups, symptomatic group normally had a larger lipid core and a significantly thinner fibrous cap based on the reconstructed plaques using 3D interpolation from stacks of 2D contours. Plaques with a higher stenosis were more likely to have extreme stress conditions upstream of plaque throat. The combined analyses of plaque MR image and plaque stress will advance our understanding of plaque rupture, and provide a useful tool on assessing plaque rupture risk.
Resumo:
Plaque rupture has been considered to be the result of its structural failure. The aim of this study is to suggest a possible link between higher stresses and rupture sites observed from in vivo magnetic resonance imaging (MRI) of transient ischemic attack (TIA) patients, by using stress analysis methods. Three patients, who had recently suffered a TIA, underwent in vivo multi-spectral MR imaging. Based on plaque geometries reconstructed from the post-rupture status, six pre-rupture plaque models were generated for each patient dataset with different reconstructions of rupture sites to bridge the gap of fibrous cap from original MRI images. Stress analysis by fluid structure interaction simulation was performed on the models, followed by analysis of local stress concentration distribution and plaque rupture sites. Furthermore, the sensitivity of stress analysis to the pre-rupture plaque geometry reconstruction was examined. Local stress concentrations were found to be located at the plaque rupture sites for the three subjects studied. In the total of 18 models created, the locations of the stress concentration regions were similar in 17 models in which rupture sites were always associated with high stresses. The local stress concentration region moved from circumferential center to the shoulder region (slightly away from the rupture site) for a case with a thick fibrous cap. Plaque wall stress level in the rupture locations was found to be much higher than the value in non-rupture locations. The good correlation between local stress concentrations and plaque rupture sites, and generally higher plaque wall stress level in rupture locations in the subjects studied could provide indirect evidence for the extreme stress-induced plaque rupture hypothesis. Local stress concentration in the plaque region could be one of the factors contributing to plaque rupture.
Resumo:
Background: Biomechanical stresses play an important role in determining plaque stability. Quantification of these simulated stresses can be potentially used to assess plaque vulnerability and differentiate different patient groups. Methods and Results: 54 asymptomatic and 45 acutely symptomatic patients underwent in vivo multicontrast magnetic resonance imaging (MRI) of the carotid arteries. Plaque geometry used for finite element analysis was derived from in vivo MRI at the sites of maximum and minimum plaque burden. In total, 198 slices were used for the computational simulations. A pre-shrink technique was used to refine the simulation. Maximum principle stress at the vulnerable plaque sites (ie, critical stress) was extracted for the selected slices and a comparison was performed between the 2 groups. Critical stress in the slice with maximum plaque burden is significantly higher in acutely symptomatic patients as compared to asymptomatic patients (median, inter quartile range: 198.0 kPa (119.8-359.0 kPa) vs 138.4 kPa (83.8-242.6 kPa), P=0.04). No significant difference was found in the slice with minimum plaque burden between the 2 groups (196.7 kPa (133.3-282.7 kPa) vs 182.4 kPa (117.2-310.6 kPa), P=0.82). Conclusions: Acutely symptomatic carotid plaques have significantly high biomechanical stresses than asymptomatic plaques. This might be potentially useful for establishing a biomechanical risk stratification criteria based on plaque burden in future studies.
Resumo:
Background: High-resolution magnetic resonance (MR) imaging has been used for MR imaging-based structural stress analysis of atherosclerotic plaques. The biomechanical stress profile of stable plaques has been observed to differ from that of unstable plaques; however, the role that structural stresses play in determining plaque vulnerability remains speculative. Methods: A total of 61 patients with previous history of symptomatic carotid artery disease underwent carotid plaque MR imaging. Plaque components of the index artery such as fibrous tissue, lipid content and plaque haemorrhage (PH) were delineated and used for finite element analysis-based maximum structural stress (M-C Stress) quantification. These patients were followed up for 2 years. The clinical end point was occurrence of an ischaemic cerebrovascular event. The association of the time to the clinical end point with plaque morphology and M-C Stress was analysed. Results: During a median follow-up duration of 514 days, 20% of patients (n=12) experienced an ischaemic event in the territory of the index carotid artery. Cox regression analysis indicated that M-C Stress (hazard ratio (HR): 12.98 (95% confidence interval (CI): 1.32-26.67, pZ0.02), fibrous cap (FC) disruption (HR: 7.39 (95% CI: 1.61e33.82), p Z 0.009) and PH (HR: 5.85 (95% CI: 1.27e26.77), p Z 0.02) are associated with the development of subsequent cerebrovascular events. Plaques associated with future events had higher M-C Stress than those which had remained asymptomatic (median (interquartile range, IQR): 330 kPa (229e494) vs. 254 kPa (166-290), p Z0.04). Conclusions: High biomechanical structural stresses, in addition to FC rupture and PH, are associated with subsequent cerebrovascular events.
Resumo:
Objectives: There is considerable evidence that patients with carotid artery stenosis treated immediately after the ischaemic cerebrovascular event have a better clinical outcome than those who have delayed treatment. Biomechanical assessment of carotid plaques using high-resolution MRI can help examine the relationship between the timing of carotid plaque symptomology and maximum simulated plaque stress concentration. Methods: Fifty patients underwent high-resolution multisequence in vivo MRI of their carotid arteries. Patients with acute symptoms (n=25) underwent MRI within 72 h of the onset of ischaemic cerebrovascular symptoms, whereas recently symptomatic patients (n=25) underwent MRI from 2 to 6 weeks after the onset of symptoms. Stress analysis was performed based on the geometry derived from in vivo MRI of the symptomatic carotid artery at the point of maximum stenosis. The peak stresses within the plaques of the two groups were compared. Results: Patient demographics were comparable for both groups. All the patients in the recently symptomatic group had severe carotid stenosis in contrast to patients with acute symptoms who had predominantly mild to moderate carotid stenosis. The simulated maximum stresses in patients with acute symptoms was significantly higher than in recently symptomatic patients (median (IQR): 313310 4 dynes/cm 2 (295 to 382) vs 2523104 dynes/cm 2 (236 to 311), p=0.02). Conclusions: Patients have extremely unstable, high-risk plaques, with high stresses, immediately after an acute cerebrovascular event, even at lower degrees of carotid stenoses. Biomechanical stress analysis may help us refine our risk-stratification criteria for the management of patients with carotid artery disease in future.
Resumo:
Stress analysis within carotid plaques based on in vivo MR imaging has shown to be useful for the identification of vulnerable atheroma. This study is to investigate whether magnetic resonance imaging (MRI) based-biomechanical stress analysis of carotid plaques can differentiate acute symptomatic and asymptomatic patients. 54 asymptomatic and 45 acute symptomatic patients underwent in vivo multi-contrast MRI of the carotid arteries. Plaque geometry used for finite element analysis was derived from in vivo MR images at the site of maximum and minimum plaque burden. In total 198 slices were used for the computational simulations. A pre shrink technique was used to refine the simulation. Maximum principle stress at the vulnerable plaque sites (i.e. critical stress) was extracted for the selected slices and a comparison was performed between the two groups. Critical stress at the site of maximum plaque burden is significantly higher in acute symptomatic patients as compared to asymptomatic patients [median: 198.0kPa (inter quartile range (IQR) = (119.8 - 359.0) vs. 138.4kPa (83.8, 242.6), p=0.04]. No significant difference was found at the minimum plaque burden site between the two groups [196.7kPa (133.3- 282.7) vs. 182.4kPa (117.2 - 310. 6), p=0.82). Stress analysis at the site of maximal plaque burden can be effectively used for differentiating acute symptomatic carotid plaques from asymptomatic plaques. This maybe potentially used for development of biomechanical risk stratification criteria based on plaque burden in future studies.
Resumo:
Objectives: It remains controversial whether patients with severe disease of the internal carotid artery and a coexisting stenotic lesion downstream would benefit from a carotid endarterectomy (CEA) of the proximal lesion. The aim of this study was to simulate the hemodynamic and wall shear effects of in-tandem internal carotid artery stenosis using a computational fluid dynamic (CFD) idealized model to give insight into the possible consequences of CEA on these lesions. Methods: A CFD model of steady viscous flow in a rigid tube with two asymmetric stenoses was introduced to simulate blood flow in arteries with multiple constrictions. The effect of varying the distance between the two stenoses, and the severity of the upstream stenosis on the pressure and wall shear stress (WSS) distributions on the second plaque, was investigated. The influence of the relative positions of the two stenoses was also assessed. Results: The distance between the plaques was found to have minimal influence on the overall hemodynamic effect except for the presence of a zone of low WSS (range -20 to 30 dyne/cm2) adjacent to both lesions when the two stenoses were sufficiently close (<4 times the arterial diameter). The upstream stenosis was protective if it was larger than the downstream stenosis. The relative positions of the stenoses were found to influence the WSS but not the pressure distribution. Conclusions: The geometry and positions of the lesions need to be considered when considering the hemodynamic effects of an in-tandem stenosis. Low WSS is thought to cause endothelial dysfunction and initiate atheroma formation. The fact that there was a flow recirculation zone with low WSS in between the two stenoses may demonstrate how two closely positioned plaques may merge into one larger lesion. Decision making for CEA may need to take into account the hemodynamic situation when an in-tandem stenosis is found. CFD may aid in the risk stratification of patients with this problem.