203 resultados para AFFERENT LIMB


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lymphedema treatment aims to alleviate symptoms, prevent progression and reduce risk of skin infection. Mainstream treatment options have been investigated in over 160 studies. Findings from these studies have been included in at least one of more than 20 literature reviews. A critique of these reviews was undertaken to summarise efficacy findings. The quality of the reviews was evaluated and gaps in the research identified, to better guide clinical practice. Overall, there was wide variation in review methods. The quality of studies included in reviews, in terms of study design and reporting overall has been poor. Reviews consistently concluded that complex physical therapy is effective at reducing limb volume. Volume reductions were also reported following the use of compression garments, pumps and manual lymphatic drainage. However, greatest improvements were reported when these treatments formed a combined treatment program. Large, well-designed, evaluated and reported randomised, controlled trials are needed to evaluate and compare treatments. Consistent outcome measures will allow better quality reviews and meta-analysis in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The purpose of this presentation is to outline the relevance of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives are • To highlight the need for categorisation of activities of daily living • To present a categorization of load regime applied on residuum, • To present some descriptors of the four types of activity that could be detected, • To provide an example the results for a case. Methods The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for 5 hours. The load applied on the residuum was divided in four types of activities corresponding to inactivity, stationary loading, localized locomotion and directional locomotion as detailed in previously publications. Results The periods of directional locomotion, localized locomotion, and stationary loading occurred 44%, 34%, and 22% of recording time and each accounted for 51%, 38%, and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localized locomotion, and stationary loading was 19%, 15%, and 8% of the body weight on the anteroposterior axis, 20%, 19%, and 12% on the mediolateral axis, and 121%, 106%, and 99% on the long axis. A total of 2,783 gait cycles were recorded. Discussion Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorization and apparatus have the potential to complement conventional instruments, particularly for difficult cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Markerless motion capture systems are relatively new devices that can significantly speed up capturing full body motion. A precision of the assessment of the finger’s position with this type of equipment was evaluated at 17.30 ± 9.56 mm when compare to an active marker system [1]. The Microsoft Kinect was proposed to standardized and enhanced clinical evaluation of patients with hemiplegic cerebral palsy [2]. Markerless motion capture systems have the potential to be used in a clinical setting for movement analysis, as well as for large cohort research. However, the precision of such system needs to be characterized. Global objectives • To assess the precision within the recording field of the markerless motion capture system Openstage 2 (Organic Motion, NY). • To compare the markerless motion capture system with an optoelectric motion capture system with active markers. Specific objectives • To assess the noise of a static body at 13 different location within the recording field of the markerless motion capture system. • To assess the smallest oscillation detected by the markerless motion capture system. • To assess the difference between both systems regarding the body joint angle measurement. Methods Equipment • OpenStage® 2 (Organic Motion, NY) o Markerless motion capture system o 16 video cameras (acquisition rate : 60Hz) o Recording zone : 4m * 5m * 2.4m (depth * width * height) o Provide position and angle of 23 different body segments • VisualeyezTM VZ4000 (PhoeniX Technologies Incorporated, BC) o Optoelectric motion capture system with active markers o 4 trackers system (total of 12 cameras) o Accuracy : 0.5~0.7mm Protocol & Analysis • Static noise: o Motion recording of an humanoid mannequin was done in 13 different locations o RMSE was calculated for each segment in each location • Smallest oscillation detected: o Small oscillations were induced to the humanoid mannequin and motion was recorded until it stopped. o Correlation between the displacement of the head recorded by both systems was measured. A corresponding magnitude was also measured. • Body joints angle: o Body motion was recorded simultaneously with both systems (left side only). o 6 participants (3 females; 32.7 ± 9.4 years old) • Tasks: Walk, Squat, Shoulder flexion & abduction, Elbow flexion, Wrist extension, Pronation / supination (not in results), Head flexion & rotation (not in results), Leg rotation (not in results), Trunk rotation (not in results) o Several body joint angles were measured with both systems. o RMSE was calculated between signals of both systems. Results Conclusion Results show that the Organic Motion markerless system has the potential to be used for assessment of clinical motor symptoms or motor performances However, the following points should be considered: • Precision of the Openstage system varied within the recording field. • Precision is not constant between limb segments. • The error seems to be higher close to the range of motion extremities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim This study assessed the association between compression use and changes in lymphoedema observed in women with breast cancer-related lymphoedema who completed a 12 week exercise intervention. Methods This work uses data collected from a 12 week exercise trial, whereby women were randomly allocated into either aerobic-based only (n=21) or resistance-based only (n=20) exercise. Compression use during the trial was at the participant’s discretion. Differences in lymphoedema (measured by L-Dex score and inter-limb circumference difference [%]) and associated symptoms between those who wore, and did not wear compression during the 12 week intervention were assessed. We also explored participants’ reasons surrounding compression during exercise. Results No significant interaction effect between time and compression use for lymphoedema was observed. There was no difference between groups over time in the number or severity of lymphoedema symptoms. Irrespective of compression use, there were trends for reductions in the proportion of women reporting severe symptoms, but lymphoedema status did not change. Individual reasons for the use of compression, or lack thereof, varied markedly. Conclusion Our findings demonstrated an absence of a positive or negative effect from compression use during exercise on lymphoedema. Current and previous findings suggest the clinical recommendation that garments must be worn during exercise is questionable, and its application requires an individualised approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rising demand for medical implants for ageing populations and ongoing advancements in medical technology continue to drive the use of implantable devices. Higher implant usage has a consequent increased incidence of implant-related infections, and associated prolonged patient care, pain and loss of limb and other organ function. Numerous antibacterial surfaces have been designed that prevent the onset of biofilm formation, thus reducing or preventing implant-associated infections through inhibiting bacterial adhesion or by killing the organisms that successfully attach to the surface of the implant. Other surfaces have been designed to stimulate a local immune response, promoting the natural clearing of the invading pathogen. The desired antibacterial effects are typically achieved by modulating the surface chemistry and morphology of the implant material, by means of the controlled release of pharmacological agents and bioactive compounds from the surface of the material, or by a combination of both processes. An important issue for any type of antibacterial surface modification lies in balancing the non-fouling, bacteriostatic or bactericidal effects against local and systemic biocompatibility. In this chapter, we will first describe the concept of biocompatibility and its evolution, from devices that do not evoke a negative host response to those that actively drive host regeneration. We will then review the challenges associated with merging the need for an implant material to withstand a bacterial load with those associated with supporting function restoration and tissue healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to determine: 1) the spatial patterns of hamstring activation during the Nordic hamstring exercise (NHE); 2) whether previously injured hamstrings display activation deficits during the NHE, and; 3) whether previously injured hamstrings exhibit altered cross-sectional area. Ten healthy, recreationally active males with a history of unilateral hamstring strain injury underwent functional magnetic resonance imaging (fMRI) of their thighs before and after 6 sets of 10 repetitions of the NHE. Transverse (T2) relaxation times of all hamstring muscles (biceps femoris long head, (BFlh); biceps femoris short head (BFsh); semitendinosus (ST); semimembranosus (SM)), were measured at rest and immediately after the NHE and cross-sectional area (CSA) was measured at rest. For the uninjured limb, the ST’s percentage increase in T2 with exercise was 16.8, 15.8 and 20.2% greater than the increases exhibited by the BFlh, BFsh and SM, respectively (p<0.002 for all). Previously injured hamstring muscles (n=10) displayed significantly smaller increases in T2 post-exercise than the homonymous muscles in the uninjured contralateral limb (mean difference -7.2%, p=0.001). No muscles displayed significant between limb differences in CSA. During the NHE, the ST is preferentially activated and previously injured hamstring muscles display chronic activation deficits compared to uninjured contralateral muscles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of large segmental bone defects remains a significant clinical challenge. Due to limitations surrounding the use of bone grafts, tissue-engineered constructs for the repair of large bone defects could offer an alternative. Before translation of any newly developed tissue engineering (TE) approach to the clinic, efficacy of the treatment must be shown in a validated preclinical large animal model. Currently, biomechanical testing, histology, and microcomputed tomography are performed to assess the quality and quantity of the regenerated bone. However, in vivo monitoring of the progression of healing is seldom performed, which could reveal important information regarding time to restoration of mechanical function and acceleration of regeneration. Furthermore, since the mechanical environment is known to influence bone regeneration, and limb loading of the animals can poorly be controlled, characterizing activity and load history could provide the ability to explain variability in the acquired data sets and potentially outliers based on abnormal loading. Many approaches have been devised to monitor the progression of healing and characterize the mechanical environment in fracture healing studies. In this article, we review previous methods and share results of recent work of our group toward developing and implementing a comprehensive biomechanical monitoring system to study bone regeneration in preclinical TE studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The estimated likelihood of lower limb amputation is 10 to 30 times higher amongst people with diabetes compared to those without diabetes. Of all non-traumatic amputations in people with diabetes, 85% are preceded by a foot ulcer. Foot ulceration associated with diabetes (diabetic foot ulcers) is caused by the interplay of several factors, most notably diabetic peripheral neuropathy (DPN), peripheral arterial disease (PAD) and changes in foot structure. These factors have been linked to chronic hyperglycaemia (high levels of glucose in the blood) and the altered metabolic state of diabetes. Control of hyperglycaemia may be important in the healing of ulcers. Objectives To assess the effects of intensive glycaemic control compared to conventional control on the outcome of foot ulcers in people with type 1 and type 2 diabetes. Search methods In December 2015 we searched: The Cochrane Wounds Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; EBSCO CINAHL; Elsevier SCOPUS; ISI Web of Knowledge Web of Science; BioMed Central and LILACS. We also searched clinical trial databases, pharmaceutical trial databases and current international and national clinical guidelines on diabetes foot management for relevant published, non-published, ongoing and terminated clinical trials. There were no restrictions based on language or date of publication or study setting. Selection criteria Published, unpublished and ongoing randomised controlled trials (RCTs) were considered for inclusion where they investigated the effects of intensive glycaemic control on the outcome of active foot ulcers in people with diabetes. Non randomised and quasi-randomised trials were excluded. In order to be included the trial had to have: 1) attempted to maintain or control blood glucose levels and measured changes in markers of glycaemic control (HbA1c or fasting, random, mean, home capillary or urine glucose), and 2) documented the effect of these interventions on active foot ulcer outcomes. Glycaemic interventions included subcutaneous insulin administration, continuous insulin infusion, oral anti-diabetes agents, lifestyle interventions or a combination of these interventions. The definition of the interventional (intensive) group was that it should have a lower glycaemic target than the comparison (conventional) group. Data collection and analysis All review authors independently evaluated the papers identified by the search strategy against the inclusion criteria. Two review authors then independently reviewed all potential full-text articles and trials registry results for inclusion. Main results We only identified one trial that met the inclusion criteria but this trial did not have any results so we could not perform the planned subgroup and sensitivity analyses in the absence of data. Two ongoing trials were identified which may provide data for analyses in a later version of this review. The completion date of these trials is currently unknown. Authors' conclusions The current review failed to find any completed randomised clinical trials with results. Therefore we are unable to conclude whether intensive glycaemic control when compared to conventional glycaemic control has a positive or detrimental effect on the treatment of foot ulcers in people with diabetes. Previous evidence has however highlighted a reduction in risk of limb amputation (from various causes) in people with type 2 diabetes with intensive glycaemic control. Whether this applies to people with foot ulcers in particular is unknown. The exact role that intensive glycaemic control has in treating foot ulcers in multidisciplinary care (alongside other interventions targeted at treating foot ulcers) requires further investigation.