238 resultados para symbolic computation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most costly operations encountered in pairing computations are those that take place in the full extension field Fpk . At high levels of security, the complexity of operations in Fpk dominates the complexity of the operations that occur in the lower degree subfields. Consequently, full extension field operations have the greatest effect on the runtime of Miller’s algorithm. Many recent optimizations in the literature have focussed on improving the overall operation count by presenting new explicit formulas that reduce the number of subfield operations encountered throughout an iteration of Miller’s algorithm. Unfortunately, almost all of these improvements tend to suffer for larger embedding degrees where the expensive extension field operations far outweigh the operations in the smaller subfields. In this paper, we propose a new way of carrying out Miller’s algorithm that involves new explicit formulas which reduce the number of full extension field operations that occur in an iteration of the Miller loop, resulting in significant speed ups in most practical situations of between 5 and 30 percent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on efficient pairing implementation has focussed on reducing the loop length and on using high-degree twists. Existence of twists of degree larger than 2 is a very restrictive criterion but luckily constructions for pairing-friendly elliptic curves with such twists exist. In fact, Freeman, Scott and Teske showed in their overview paper that often the best known methods of constructing pairing-friendly elliptic curves over fields of large prime characteristic produce curves that admit twists of degree 3, 4 or 6. A few papers have presented explicit formulas for the doubling and the addition step in Miller’s algorithm, but the optimizations were all done for the Tate pairing with degree-2 twists, so the main usage of the high- degree twists remained incompatible with more efficient formulas. In this paper we present efficient formulas for curves with twists of degree 2, 3, 4 or 6. These formulas are significantly faster than their predecessors. We show how these faster formulas can be applied to Tate and ate pairing variants, thereby speeding up all practical suggestions for efficient pairing implementations over fields of large characteristic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miller’s algorithm for computing pairings involves perform- ing multiplications between elements that belong to different finite fields. Namely, elements in the full extension field Fpk are multiplied by elements contained in proper subfields F pk/d , and by elements in the base field Fp . We show that significant speedups in pairing computations can be achieved by delaying these “mismatched” multiplications for an optimal number of iterations. Importantly, we show that our technique can be easily integrated into traditional pairing algorithms; implementers can exploit the computational savings herein by applying only minor changes to existing pairing code.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, most applications of algebraic analysis and attacks on stream ciphers are on those based on lin- ear feedback shift registers (LFSRs). In this paper, we extend algebraic analysis to non-LFSR based stream ciphers. Specifically, we perform an algebraic analysis on the RC4 family of stream ciphers, an example of stream ciphers based on dynamic tables, and inves- tigate its implications to potential algebraic attacks on the cipher. This is, to our knowledge, the first pa- per that evaluates the security of RC4 against alge- braic attacks through providing a full set of equations that describe the complex word manipulations in the system. For an arbitrary word size, we derive alge- braic representations for the three main operations used in RC4, namely state extraction, word addition and state permutation. Equations relating the inter- nal states and keystream of RC4 are then obtained from each component of the cipher based on these al- gebraic representations, and analysed in terms of their contributions to the security of RC4 against algebraic attacks. Interestingly, it is shown that each of the three main operations contained in the components has its own unique algebraic properties, and when their respective equations are combined, the resulting system becomes infeasible to solve. This results in a high level of security being achieved by RC4 against algebraic attacks. On the other hand, the removal of an operation from the cipher could compromise this security. Experiments on reduced versions of RC4 have been performed, which confirms the validity of our algebraic analysis and the conclusion that the full RC4 stream cipher seems to be immune to algebraic attacks at present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel approach for preprocessing systems of polynomial equations via graph partitioning. The variable-sharing graph of a system of polynomial equations is defined. If such graph is disconnected, then the corresponding system of equations can be split into smaller ones that can be solved individually. This can provide a tremendous speed-up in computing the solution to the system, but is unlikely to occur either randomly or in applications. However, by deleting certain vertices on the graph, the variable-sharing graph could be disconnected in a balanced fashion, and in turn the system of polynomial equations would be separated into smaller systems of near-equal sizes. In graph theory terms, this process is equivalent to finding balanced vertex partitions with minimum-weight vertex separators. The techniques of finding these vertex partitions are discussed, and experiments are performed to evaluate its practicality for general graphs and systems of polynomial equations. Applications of this approach in algebraic cryptanalysis on symmetric ciphers are presented: For the QUAD family of stream ciphers, we show how a malicious party can manufacture conforming systems that can be easily broken. For the stream ciphers Bivium and Trivium, we nachieve significant speedups in algebraic attacks against them, mainly in a partial key guess scenario. In each of these cases, the systems of polynomial equations involved are well-suited to our graph partitioning method. These results may open a new avenue for evaluating the security of symmetric ciphers against algebraic attacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the earliest cryptographic applications of quantum information was to create quantum digital cash that could not be counterfeited. In this paper, we describe a new type of quantum money: quantum coins, where all coins of the same denomination are represented by identical quantum states. We state desirable security properties such as anonymity and unforgeability and propose two candidate quantum coin schemes: one using black box operations, and another using blind quantum computation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a growing body of literature within social and cultural geography that explores notions of place, space, culture, race and identity. When health services in rural communities are explored using these notions, it can lead to multiple ways of understanding the cultural meanings inscribed within health services and how they can be embedded with an array of politics. For example, health services can often reflect the symbolic place that each individual holds within that rural community. Through the use of a rural health service case study, this paper will demonstrate how the physical sites and appearances of health services can act as social texts that convey messages of belonging and welcome, or exclusion and domination. They can also produce and reproduce power and control relations. In this way, they can influence the ways that Aboriginal people engage in health service environments – either as places where Aboriginal people feel welcome, comfortable, secure and culturally safe and happy to use the health service, or as places where they utilise the service provided with a great deal of effort, angst and energy. It is important to understand how these complex notions play out in rural communities if the health and wellbeing of Aboriginal people is going to be addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a new experimental method for interrogating statistical theories of music perception by implementing these theories as generative music algorithms. We call this method Generation in Context. This method differs from most experimental techniques in music perception in that it incorporates aesthetic judgments. Generation In Context is designed to measure percepts for which the musical context is suspected to play an important role. In particular the method is suitable for the study of perceptual parameters which are temporally dynamic. We outline a use of this approach to investigate David Temperley’s (2007) probabilistic melody model, and provide some provisional insights as to what is revealed about the model. We suggest that Temperley’s model could be improved by dynamically modulating the probability distributions according to the changing musical context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cloud computing has become a main medium for Software as a Service (SaaS) hosting as it can provide the scalability a SaaS requires. One of the challenges in hosting the SaaS is the placement process where the placement has to consider SaaS interactions between its components and SaaS interactions with its data components. A previous research has tackled this problem using a classical genetic algorithm (GA) approach. This paper proposes a cooperative coevolutionary algorithm (CCEA) approach. The CCEA has been implemented and evaluated and the result has shown that the CCEA has produced higher quality solutions compared to the GA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-sided classifier for a given class of languages converges to 1 on every language from the class and outputs 0 infinitely often on languages outside the class. A two-sided classifier, on the other hand, converges to 1 on languages from the class and converges to 0 on languages outside the class. The present paper investigates one-sided and two-sided classification for classes of recursive languages. Theorems are presented that help assess the classifiability of natural classes. The relationships of classification to inductive learning theory and to structural complexity theory in terms of Turing degrees are studied. Furthermore, the special case of classification from only positive data is also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shell structures find use in many fields of engineering, notably structural, mechanical, aerospace and nuclear-reactor disciplines. Axisymmetric shell structures are used as dome type of roofs, hyperbolic cooling towers, silos for storage of grain, oil and industrial chemicals and water tanks. Despite their thin walls, strength is derived due to the curvature. The generally high strength-to-weight ratio of the shell form, combined with its inherent stiffness, has formed the basis of this vast application. With the advent in computation technology, the finite element method and optimisation techniques, structural engineers have extremely versatile tools for the optimum design of such structures. Optimisation of shell structures can result not only in improved designs, but also in a large saving of material. The finite element method being a general numerical procedure that could be used to treat any shell problem to any desired degree of accuracy, requires several runs in order to obtain a complete picture of the effect of one parameter on the shell structure. This redesign I re-analysis cycle has been achieved via structural optimisation in the present research, and MSC/NASTRAN (a commercially available finite element code) has been used in this context for volume optimisation of axisymmetric shell structures under axisymmetric and non-axisymmetric loading conditions. The parametric study of different axisymmetric shell structures has revealed that the hyperbolic shape is the most economical solution of shells of revolution. To establish this, axisymmetric loading; self-weight and hydrostatic pressure, and non-axisymmetric loading; wind pressure and earthquake dynamic forces have been modelled on graphical pre and post processor (PATRAN) and analysis has been performed on two finite element codes (ABAQUS and NASTRAN), numerical model verification studies are performed, and optimum material volume required in the walls of cylindrical, conical, parabolic and hyperbolic forms of axisymmetric shell structures are evaluated and reviewed. Free vibration and transient earthquake analysis of hyperbolic shells have been performed once it was established that hyperbolic shape is the most economical under all possible loading conditions. Effect of important parameters of hyperbolic shell structures; shell wall thickness, height and curvature, have been evaluated and empirical relationships have been developed to estimate an approximate value of the lowest (first) natural frequency of vibration. The outcome of this thesis has been the generation of new research information on performance characteristics of axisymmetric shell structures that will facilitate improved designs of shells with better choice of shapes and enhanced levels of economy and performance. Key words; Axisymmetric shell structures, Finite element analysis, Volume Optimisation_ Free vibration_ Transient response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The law and popular opinion expect boards of directors will actively monitor their organisations. Further, public opinion is that boards should have a positive impact on organisational performance. However, the processes of board monitoring and judgment are poorly understood, and board influence on organisational performance needs to be better understood. This thesis responds to the repeated calls to open the ‘black box’ linking board practices and organisational performance by investigating the processual behaviours of boards. The work of four boards1 of micro and small-sized nonprofit organisations were studied for periods of at least one year, using a processual research approach, drawing on observations of board meetings, interviews with directors, and the documents of the boards. The research shows that director turnover, the difficulty recruiting and engaging directors, and the administration of reporting, had strong impacts upon board monitoring, judging and/or influence. In addition, board monitoring of organisational performance was adversely affected by directors’ limited awareness of their legal responsibilities and directors’ limited financial literacy. Directors on average found all sources of information about their organisation’s work useful. Board judgments about the financial aspects of organisational performance were regulated by the routines of financial reporting. However, there were no comparable routines facilitating judgments about non-financial performance, and such judgments tended to be limited to specific aspects of performance and were ad hoc, largely in response to new information or the repackaging of existing information in a new form. The thesis argues that Weick’s theory of sensemaking offers insight into the way boards went about the task of understanding organisational performance. Board influence on organisational performance was demonstrated in the areas of: compliance; instrumental influence through service and through discussion and decision-making; and by symbolic, legitimating and protective means. The degree of instrumental influence achieved by boards depended on director competency, access to networks of influence, and understandings of board roles, and by the agency demonstrated by directors. The thesis concludes that there is a crowding out effect whereby CEO competence and capability limits board influence. The thesis also suggests that there is a second ‘agency problem’, a problem of director volition. The research potentially has profound implications for the work of nonprofit boards. Rather than purporting to establish a general theory of board governance, the thesis embraces calls to build situation-specific mini-theories about board behaviour.