288 resultados para swd: Image segmentation
Resumo:
With the rising popularity of anime amongst animation students, audiences and scholars around the world, it has become increasingly important to critically analyse anime as being more than a ‘limited’ form of animation, and thematically as encompassing more than super robots and pocket monsters. Frames of Anime: Culture and Image-Building charts the development of Japanese animation from its indigenous roots within a native culture, through Japan’s experience of modernity and the impact of the Second World War. This text is the result of a rigorous study that recognises the heterogeneous and polymorphous background of anime. As such, Tze-Yue has adopted an ‘interdisciplinary and transnational’ (p. 7) approach to her enquiry, drawing upon face-to-face interviews, on-site visits and biographical writings of animators. Tze-Yue delineates anime from other forms of animation by linking its visual style to pre-modern Japanese art forms and demonstrating the connection it shares with an indigenous folk system of beliefs. Via the identification of traditional Japanese art forms and their visual connectedness to Japanese animation, Tze-Yue shows that the Japanese were already heavily engaged in what was destined to become anime once technology had enabled its production. Tze-Yue’s efforts to connect traditional Japanese art forms, and their artistic elements, to contemporary anime reveals that the Japanese already had a rich culture of visual storytelling that pre-dates modern animation. She identifies the Japanese form of the magic lantern at the turn of the 19th century, utsushi-e, as the pre-modern ancestor of Japanese animation, describing it as ‘Edo anime’ (p. 43). Along with utsushi-e, the Edo period also saw the woodblock print, ukiyo-e, being produced for the rising middle class (p. 32). Highlighting the ‘resurfacing’ of ‘realist’ approaches to Japanese art in ukiyo-e, Tze-Yue demonstrates the visual connection of ukiyo-e and anime in the …
Resumo:
The ubiquity of multimodality in hypermedia environments is undeniable. Bezemer and Kress (2008) have argued that writing has been displaced by image as the central mode for representation. Given the current technical affordances of digital technology and user-friendly interfaces that enable the ease of multimodal design, the conspicuous absence of images in certain domains of cyberspace is deserving of critical analysis. In this presentation, I examine the politics of discourses implicit within hypertextual spaces, drawing textual examples from a higher education website. I critically examine the role of writing and other modes of production used in what Fairclough (1993) refers to as discourses of marketisation in higher education, tracing four pervasive discourses of teaching and learning in the current economy: i) materialization, ii) personalization, iii) technologisation, and iv) commodification (Fairclough, 1999). Each of these arguments is supported by the critical analysis of multimodal texts. The first is a podcast highlighting the new architectonic features of a university learning space. The second is a podcast and transcript of a university Open Day interview with prospective students. The third is a time-lapse video showing the construction of a new science and engineering precinct. These three multimodal texts contrast a final web-based text that exhibits a predominance of writing and the powerful absence or silencing of the image. I connect the weightiness of words and the function of monomodality in the commodification of discourses, and its resistance to the multimodal affordances of web-based technologies, and how this is used to establish particular sets of subject positions and ideologies through which readers are constrained to occupy. Applying principles of critical language study by theorists that include Fairclough, Kress, Lemke, and others whose semiotic analysis of texts focuses on the connections between language, power, and ideology, I demonstrate how the denial of image and the privileging of written words in the multimodality of cyberspace is an ideological effect to accentuate the dominance of the institution.
Resumo:
Teleradiology allows medical images to be transmitted over electronic networks for clinical interpretation, and for improved healthcare access, delivery and standards. Although, such remote transmission of the images is raising various new and complex legal and ethical issues, including image retention and fraud, privacy, malpractice liability, etc., considerations of the security measures used in teleradiology remain unchanged. Addressing this problem naturally warrants investigations on the security measures for their relative functional limitations and for the scope of considering them further. In this paper, starting with various security and privacy standards, the security requirements of medical images as well as expected threats in teleradiology are reviewed. This will make it possible to determine the limitations of the conventional measures used against the expected threats. Further, we thoroughly study the utilization of digital watermarking for teleradiology. Following the key attributes and roles of various watermarking parameters, justification for watermarking over conventional security measures is made in terms of their various objectives, properties, and requirements. We also outline the main objectives of medical image watermarking for teleradiology, and provide recommendations on suitable watermarking techniques and their characterization. Finally, concluding remarks and directions for future research are presented.
Resumo:
Purpose Arbitrary numbers of corneal confocal microscopy images have been used for analysis of corneal subbasal nerve parameters under the implicit assumption that these are a representative sample of the central corneal nerve plexus. The purpose of this study is to present a technique for quantifying the number of random central corneal images required to achieve an acceptable level of accuracy in the measurement of corneal nerve fiber length and branch density. Methods Every possible combination of 2 to 16 images (where 16 was deemed the true mean) of the central corneal subbasal nerve plexus, not overlapping by more than 20%, were assessed for nerve fiber length and branch density in 20 subjects with type 2 diabetes and varying degrees of functional nerve deficit. Mean ratios were calculated to allow comparisons between and within subjects. Results In assessing nerve branch density, eight randomly chosen images not overlapping by more than 20% produced an average that was within 30% of the true mean 95% of the time. A similar sampling strategy of five images was 13% within the true mean 80% of the time for corneal nerve fiber length. Conclusions The “sample combination analysis” presented here can be used to determine the sample size required for a desired level of accuracy of quantification of corneal subbasal nerve parameters. This technique may have applications in other biological sampling studies.
Resumo:
In 2010, the State Library of Queensland (SLQ) donated their out-of-copyright Queensland images to Wikimedia Commons. One direct effect of publishing the collections at Wikimedia Commons is the ability of general audiences to participate and help the library in processing the images in the collection. This paper will discuss a project that explored user participation in the categorisation of the State Library of Queensland digital image collections. The outcomes of this project can be used to gain a better understanding of user participation that lead to improving access to library digital collections. Two techniques for data collection were used: documents analysis and interview. Document analysis was performed on the Wikimedia Commons monthly reports. Meanwhile, interview was used as the main data collection technique in this research. The data collected from document analysis was used to help the researchers to devise appropriate questions for interviews. The interviews were undertaken with participants who were divided into two groups: SLQ staff members and Wikimedians (users who participate in Wikimedia). The two sets of data collected from participants were analysed independently and compared. This method was useful for the researchers to understand the differences between the experiences of categorisation from both the librarians’ and the users’ perspectives. This paper will provide a discussion on the preliminary findings that have emerged from each group participant. This research provides preliminary information about the extent of user participation in the categorisation of SLQ collections in Wikimedia Commons that can be used by SLQ and other interested libraries in describing their digital content by their categorisations to improve user access to the collection in the future.
Rotorcraft collision avoidance using spherical image-based visual servoing and single point features
Resumo:
This paper presents a reactive collision avoidance method for small unmanned rotorcraft using spherical image-based visual servoing. Only a single point feature is used to guide the aircraft in a safe spiral like trajectory around the target, whilst a spherical camera model ensures the target always remains visible. A decision strategy to stop the avoidance control is derived based on the properties of spiral like motion, and the effect of accurate range measurements on the control scheme is discussed. We show that using a poor range estimate does not significantly degrade the collision avoidance performance, thus relaxing the need for accurate range measurements. We present simulated and experimental results using a small quad rotor to validate the approach.
Resumo:
Purpose. To evaluate the use of optical coherence tomography (OCT) to assess the effect of different soft contact lenses on corneoscleral morphology. Methods. Ten subjects had anterior segment OCT B-scans taken in the morning and again after six hours of soft contact lens wear. For each subject, three different contact lenses were used in the right eye on non-consecutive days, including a hydrogel sphere, a silicone hydrogel sphere and a silicone hydrogel toric. After image registration and layer segmentation, analyses were performed of the first hyper-reflective layer (HRL), the epithelial basement membrane (EBL) and the epithelial thickness (HRL to EBL). A root mean square difference (RMSD) of the layer profiles and the thickness change between the morning and afternoon measurements, was used to assess the effect of the contact lens on the corneoscleral morphology. Results. The soft contact lenses had a statistically significant effect on the morphology of the anterior segment layers (p <0.001). The average amounts of change for the three lenses (average RMSD values) for the corneal region were lower (3.93±1.95 µm for the HRL and 4.02±2.14 µm for the EBL) than those measured in the limbal/scleral region (11.24±6.21 µm for the HRL and 12.61±6.42 µm for the EBL). Similarly, averaged across the three lenses, the RMSD in epithelial thickness was lower in the cornea (2.84±0.84 µm) than the limbal/scleral (5.47±1.71 µm) region. Post-hoc analysis showed that ocular surface changes were significantly smaller with the silicone hydrogel sphere lens than both the silicone hydrogel toric (p<0.005) and hydrogel sphere (p<0.02) for the combined HRL and EBL data. Conclusions. In this preliminary study, we have shown that soft contact lenses can produce small but significant changes in the morphology of the limbal/scleral region and that OCT technology is useful in assessing these changes. The clinical significance of these changes is yet to be determined.
Resumo:
Typical flow fields in a stormwater gross pollutant trap (GPT) with blocked retaining screens were experimentally captured and visualised. Particle image velocimetry (PIV) software was used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. A technique was developed to apply the Image Based Flow Visualization (IBFV) algorithm to the experimental raw dataset generated by the PIV software. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding gross pollutant capture and retention within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate specific areas and identify the flow features within the GPT.
Resumo:
This paper presents a novel technique for segmenting an audio stream into homogeneous regions according to speaker identities, background noise, music, environmental and channel conditions. Audio segmentation is useful in audio diarization systems, which aim to annotate an input audio stream with information that attributes temporal regions of the audio into their specific sources. The segmentation method introduced in this paper is performed using the Generalized Likelihood Ratio (GLR), computed between two adjacent sliding windows over preprocessed speech. This approach is inspired by the popular segmentation method proposed by the pioneering work of Chen and Gopalakrishnan, using the Bayesian Information Criterion (BIC) with an expanding search window. This paper will aim to identify and address the shortcomings associated with such an approach. The result obtained by the proposed segmentation strategy is evaluated on the 2002 Rich Transcription (RT-02) Evaluation dataset, and a miss rate of 19.47% and a false alarm rate of 16.94% is achieved at the optimal threshold.
Resumo:
This paper presents an efficient face detection method suitable for real-time surveillance applications. Improved efficiency is achieved by constraining the search window of an AdaBoost face detector to pre-selected regions. Firstly, the proposed method takes a sparse grid of sample pixels from the image to reduce whole image scan time. A fusion of foreground segmentation and skin colour segmentation is then used to select candidate face regions. Finally, a classifier-based face detector is applied only to selected regions to verify the presence of a face (the Viola-Jones detector is used in this paper). The proposed system is evaluated using 640 x 480 pixels test images and compared with other relevant methods. Experimental results show that the proposed method reduces the detection time to 42 ms, where the Viola-Jones detector alone requires 565 ms (on a desktop processor). This improvement makes the face detector suitable for real-time applications. Furthermore, the proposed method requires 50% of the computation time of the best competing method, while reducing the false positive rate by 3.2% and maintaining the same hit rate.
Resumo:
Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.
Resumo:
Many state of the art vision-based Simultaneous Localisation And Mapping (SLAM) and place recognition systems compute the salience of visual features in their environment. As computing salience can be problematic in radically changing environments new low resolution feature-less systems have been introduced, such as SeqSLAM, all of which consider the whole image. In this paper, we implement a supervised classifier system (UCS) to learn the salience of image regions for place recognition by feature-less systems. SeqSLAM only slightly benefits from the results of training, on the challenging real world Eynsham dataset, as it already appears to filter less useful regions of a panoramic image. However, when recognition is limited to specific image regions performance improves by more than an order of magnitude by utilising the learnt image region saliency. We then investigate whether the region salience generated from the Eynsham dataset generalizes to another car-based dataset using a perspective camera. The results suggest the general applicability of an image region salience mask for optimizing route-based navigation applications.
Resumo:
In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.
Resumo:
Since the first destination image studies were published in the early 1970s, the field has become one of the most popular in the tourism literature. While reviews of the destination image literature show no commonly agreed conceptualisation of the construct, researchers have predominantly used structured questionnaires for measurement. There has been criticism that the way some of these scales have been selected means a greater likelihood of attributes being irrelevant to participants. This opens up the risk of stimulating uninformed responses. The issue of uninformed response was first raised as a source of error 60 years ago. However, there has been little, if any, discussion in relation to destination image measurement, studies of which often require participants to provide opinion-driven rather than fact-based responses. This paper reports the trial of a ‘don’t know’ (DK) non-response option for participants in two destination image questionnaires. It is suggested the use of a DK option provides participants with an alternative to i) skipping the question, ii) using the scale midpoint to denote neutrality, or iii) providing an uninformed response. High levels of DK usage by participants can then alert the marketer of the need to improve awareness of destination performance for potential salient attributes.