191 resultados para structures and mechanisms
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
Diaphragm action of crest-fixed profiled steel claddings is present in low-rise buildings whether the designer acknowledges it or not. For the designers to take advantage of the diaphragm strength of the crest-fixed steel claddings in the design of low-rise buildings in a similar manner to valley-fixed claddings, and to design the buildings based on the true behaviour rather than the assumed behaviour, shear/racking behaviour of the three trapezoidal and corrugated steel claddings commonly used at present was investigated using large scale experiments. Crest-fixed claddings (up to a maximum size of 6 x 6.2m) with different aspect ratio and fastening systems were tested to failure, based on which suitable shear strength and stiffness values have been proposed for these claddings as they are used at present. A simple analytical model combined with basic connection data from small scale experiments was used to predict the shear strength of tested panels. Currently attempts are being made to develop general design formulae to determine shear strength and stiffness of crest-fixed steel claddings...
Resumo:
This work aims to understand the influence of TiO2 surface structure in Au/TiO2 catalysts on CO oxidation. Au nanoparticles (3 wt%) in the range of 4 to 8 nm were loaded onto four kinds of TiO2 surfaces, which had different surface structures and were synthesized by calcining hydrogen titanate nanotubes at various temperatures and in different atmospheres. The Au catalyst supported on anatase nanorods exhibited the highest activity in CO oxidation at 30 °C among all the five Au/TiO2 catalysts including the reference catalyst of Au/TiO2-P25. X-ray photoelectron spectroscopy (XPS) and infrared emission spectra (IES) results indicate that the anatase nanorods have the most active surface on which water molecules can be strongly adsorbed and OH groups can be formed readily. Theoretical calculation indicates that the surface OH can facilitate the O2 adsorption on the anatase surface. Such active surface features are conducive to the O2 activation and CO oxidation
Resumo:
Research in the field of teenage drinking behavior has shown relationships between both social skills and drinking and alcohol expectancies and drinking. The present research investigated the comparative power of both of these sets of variables in predicting teenage drinking behavior, as well as looking at the contribution of more global cognitive structures. It was hypothesised that adolescents with high alcohol involvement would be discriminated from those with low involvement on the basis of social skills, cognitive structures, and alcohol expectancies. Seven hundred thirty-two adolescents participated in the study. Results indicated that adolescent alcohol involvement was associated with social skills deficits, positive alcohol expectancies, and negative cognitive structures concerning parents and teachers. The results revealed that, although the bulk of the variance in drinking behavior was explained by the independent effects of social skills and expectancies, the interaction of the two constructs explained an additional and significant proportion of the variance. Implications for preventive and treatment programs are discussed.
Resumo:
Objective: This study examined associations of asthma and food allergy with symptoms of depression and anxiety at 14 and 21 years of age to determine whether condition-specific associations exist. Methods: Data come from 4972 adolescents in the Mater University Study of Pregnancy. Symptoms of depression and anxiety were assessed using the Youth Self-Report and Young Adult Self-Report. Results: Condition-specific associations between asthma and depression, OR=1.37 [1.12, 1.67] and between food allergy and anxiety, OR=1.26 [1.04, 1.76] were found during adolescence, but not in young adulthood. Whereas asthma was associated with resolved depression, OR=1.70 [1.13, 2.55], food allergy was associated with persistent anxiety, OR=1.26 [1.01, 1.59]. Conclusions: In adolescents, asthma is associated with an increased risk of clinically relevant symptoms of depression and food allergy with and increased risk of clinically relevant symptoms of anxiety. Future research is needed to clarify directionality and mechanisms explaining these relationships. Health professionals should be aware of the increased risk of mental health problems in adolescents with asthma or food allergy.
Resumo:
Usage of new smart materials in retrofitting of structures has become popular within last decade. Carbon fiber reinforced polymer (CFRP) has been widely used in retrofitting and strengthening of concrete structures and its usage in metallic structures is still in the developing stage. The variation of mechanical properties of CFRP and the consequent effects on strengthening and retrofitting CFRP systems are yet to be investigated under different loading and environmental conditions. This paper presents the results of CFRP strengthened and retrofitted corroded steel plate double strap joints under tension. An accelerated corrosion cell has been developed to accelerate the corrosion of the steel samples and CFRP strengthened samples. The results show a direct comparison of bond characteristics of CFRP strengthened and retrofitted steel double strap joints.
Resumo:
This paper reviews the recent research progress on multi-layer composite structures composed of variety of materials. The utilization of multi-layer composite system is found to be common in metal structures and pavement systems. The layer of composite structure designed to encounter heavy dynamic energy should have sufficient ductility to counteract the intensity of energy. Therefore, the selection of materials and enhancement of interface bonding become crucial and both are discussed in this paper. The failure modes have also been explored in conjunction with stresses at failures and inferred solutions are also revealed. The paper attempts to reveal all technical facts on multi-layer composite structure in a broad field.
Resumo:
Glycosaminoglycans (GAGs) are important complex carbohydrates that participate in many biological processes through the regulation of their various protein partners. Biochemical, structural biology and molecular modelling approaches have assisted in understanding the molecular basis of such interactions, creating an opportunity to capitalize on the large structural diversity of GAGs in the discovery of new drugs. The complexity of GAG–protein interactions is in part due to the conformational flexibility and underlying sulphation patterns of GAGs, the role of metal ions and the effect of pH on the affinity of binding. Current understanding of the structure of GAGs and their interactions with proteins is here reviewed: the basic structures and functions of GAGs and their proteoglycans, their clinical significance, the three-dimensional features of GAGs, their interactions with proteins and the molecular modelling of heparin binding sites and GAG–protein interactions. This review focuses on some key aspects of GAG structure–function relationships using classical examples that illustrate the specificity of GAG–protein interactions, such as growth factors, anti-thrombin, cytokines and cell adhesion molecules. New approaches to the development of GAG mimetics as possible new glycotherapeutics are also briefly covered.
Resumo:
Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.
Resumo:
Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM). CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.
Resumo:
Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.