202 resultados para quantum search
Resumo:
To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.
Resumo:
In this paper we image the highly confined long range plasmons of a nanoscale metal stripe waveguide using quantum emitters. Plasmons were excited using a highly focused 633 nm laser beam and a specially designed grating structure to provide stronger incoupling to the desired mode. A homogeneous thin layer of quantum dots was used to image the near field intensity of the propagating plasmons on the waveguide. We observed that the photoluminescence is quenched when the QD to metal surface distance is less than 10 nm. The optimised spacer layer thickness for the stripe waveguides was found to be around 20 nm. Authors believe that the findings of this paper prove beneficial for the development of plasmonic devices utilising stripe waveguides.
Resumo:
A simple and rapid method of analysis for mercury ions (Hg2+) and cysteine (Cys) was developed with the use of graphene quantum dots (GQDs) as a fluorescent probe. In the presence of GQDs, Hg2+ cations are absorbed on their negatively charged surface by means of electrostatic interactions. Thus, the fluorescence (FL) of the GQDs would be significantly quenched as a result of the FL charge transfer, e.g. 92% quenching at 450 nm occurs for a 5 μmol L−1 Hg2+ solution. However, when Cys was added, a significant FL enhancement was observed (510% at 450 nm for a 8.0 μmol L−1 Cys solution), and Hg2+ combined with Cys rather than with the GQDs in an aqueous solution. This occurred because a strong metalsingle bondthiol bond formed, displacing the weak electrostatic interactions, and this resulted in an FL enhancement of the GQDs. The limits of detection (LOD) for Hg2+ and Cys were 0.439 nmol L−1 and 4.5 nmol L−1, respectively. Also, this method was used successfully to analyze Hg2+ and Cys in spiked water samples.
Resumo:
Previous qualitative research has highlighted that temporality plays an important role in relevance for clinical records search. In this study, an investigation is undertaken to determine the effect that the timespan of events within a patient record has on relevance in a retrieval scenario. In addition, based on the standard practise of document length normalisation, a document timespan normalisation model that specifically accounts for timespans is proposed. Initial analysis revealed that in general relevant patient records tended to cover a longer timespan of events than non-relevant patient records. However, an empirical evaluation using the TREC Medical Records track supports the opposite view that shorter documents (in terms of timespan) are better for retrieval. These findings highlight that the role of temporality in relevance is complex and how to effectively deal with temporality within a retrieval scenario remains an open question.
Resumo:
Spontaneous emission (SE) of a Quantum emitter depends mainly on the transmission strength between the upper and lower energy levels as well as the Local Density of States (LDOS)[1]. When a QD is placed in near a plasmon waveguide, LDOS of the QD is increased due to addition of the non-radiative decay and a plasmonic decay channel to free space emission[2-4]. The slow velocity and dramatic concentration of the electric field of the plasmon can capture majority of the SE into guided plasmon mode (Гpl ). This paper focused on studying the effect of waveguide height on the efficiency of coupling QD decay into plasmon mode using a numerical model based on finite elemental method (FEM). Symmetric gap waveguide considered in this paper support single mode and QD as a dipole emitter. 2D simulation models are done to find normalized Гpl and 3D models are used to find probability of SE decaying into plasmon mode ( β) including all three decay channels. It is found out that changing gap height can increase QD-plasmon coupling, by up to a factor of 5 and optimally placed QD up to a factor of 8. To make the paper more realistic we briefly studied the effect of sharpness of the waveguide edge on SE emission into guided plasmon mode. Preliminary nano gap waveguide fabrication and testing are already underway. Authors expect to compare the theoretical results with experimental outcomes in the future
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
An efficient method for the analysis of hydroquinone at trace levels in water samples has been developed in the form of a fluorescent probe based on graphene quantum dots (GQDs). The analytical variable, fluorescence quenching, was generated from the formation of benzoquinone intermediates, which formed during the catalytic oxidation of hydroquinone by horseradish peroxidase (HRP). In general, the reaction mechanism involved hydroquinone, as an electron acceptor, which affected the surface state of GQDs via an electron transfer effect. The water-soluble GQDs were directly prepared by the pyrolysis of citric acid and with the use of the mentioned hybrid enzyme system, the detection limit for hydroquinone was as low as 8.4 × 10−8 M. Furthermore, this analysis was almost unaffected by other phenol and quinine compounds, such as phenol, resorcinol and other quinines, and therefore, the developed GQD method produced satisfactory results for the analysis of hydroquinone in several different lake water samples.
Resumo:
Much of the work currently occurring in the field of Quantum Interaction (QI) relies upon Projective Measurement. This is perhaps not optimal, cognitive states are not nearly as well behaved as standard quantum mechanical systems; they exhibit violations of repeatability, and the operators that we use to describe measurements do not appear to be naturally orthogonal in cognitive systems. Here we attempt to map the formalism of Positive Operator Valued Measure (POVM) theory into the domain of semantic memory, showing how it might be used to construct Bell-type inequalities.
Resumo:
A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.
Resumo:
This report describes the development and simulation of a variable rate controller for a 6-degree of freedom nonlinear model. The variable rate simulation model represents an off the shelf autopilot. Flight experiment involves risks and can be expensive. Therefore a dynamic model to understand the performance characteristics of the UAS in mission simulation before actual flight test or to obtain parameters needed for the flight is important. The control and guidance is implemented in Simulink. The report tests the use of the model for air search and air sampling path planning. A GUI in which a set of mission scenarios, in which two experts (mission expert, i.e. air sampling or air search and an UAV expert) interact, is presented showing the benefits of the method.
Resumo:
Theories of search and search behavior can be used to glean insights and generate hypotheses about how people interact with retrieval systems. This paper examines three such theories, the long standing Information Foraging Theory, along with the more recently proposed Search Economic Theory and the Interactive Probability Ranking Principle. Our goal is to develop a model for ad-hoc topic retrieval using each approach, all within a common framework, in order to (1) determine what predictions each approach makes about search behavior, and (2) show the relationships, equivalences and differences between the approaches. While each approach takes a different perspective on modeling searcher interactions, we show that under certain assumptions, they lead to similar hypotheses regarding search behavior. Moreover, we show that the models are complementary to each other, but operate at different levels (i.e., sessions, patches and situations). We further show how the differences between the approaches lead to new insights into the theories and new models. This contribution will not only lead to further theoretical developments, but also enables practitioners to employ one of the three equivalent models depending on the data available.
Resumo:
At the 2014 G20 held in Brisbane, Australia took the position that climate change is not an economic issue. Most others thought it was - especially the Turkish Prime Minister who is hosting the 2015 G20. It is certainly an economic issue. But, it is not just an economic issue - either in the source or the solution.
Resumo:
BACKGROUND: Genetic variation contributes to the risk of developing endometriosis. This review summarizes gene mapping studies in endometriosis and the prospects of finding gene pathways contributing to disease using the latest genome-wide strategies. METHODS: To identify candidate-gene association studies of endometriosis, a systematic literature search was conducted in PubMed of publications up to 1 April 2008, using the search terms 'endometriosis' plus 'allele' or 'polymorphism' or 'gene'. Papers included were those with information on both case and control selection, showed allelic and/or genotypic results for named germ-line polymorphisms and were published in the English language. RESULTS: Genetic variants in 76 genes have been examined for association, but none shows convincing evidence of replication in multiple studies. There is evidence for genetic linkage to chromosomes 7 and 10, but the genes (or variants) in these regions contributing to disease risk have yet to be identified. Genome-wide association is a powerful method that has been successful in locating genetic variants contributing to a range of common diseases. Several groups are planning these studies in endometriosis. For this to be successful, the endometriosis research community must work together to genotype sufficient cases, using clearly defined disease classifications, and conduct the necessary replication studies in several thousands of cases and controls. CONCLUSIONS: Genes with convincing evidence for association with endometriosis are likely to be identified in large genome-wide studies. This will provide a starting point for functional and biological studies to develop better diagnosis and treatment for this debilitating disease.
Resumo:
This research is a step forward in discovering knowledge from databases of complex structure like tree or graph. Several data mining algorithms are developed based on a novel representation called Balanced Optimal Search for extracting implicit, unknown and potentially useful information like patterns, similarities and various relationships from tree data, which are also proved to be advantageous in analysing big data. This thesis focuses on analysing unordered tree data, which is robust to data inconsistency, irregularity and swift information changes, hence, in the era of big data it becomes a popular and widely used data model.