391 resultados para particle formation
Resumo:
Many Brisbane houses were affected by water inundation as a result of the flooding event which occurred in January 2011. The combination of waterlogged materials and large amounts of silt and organic debris in affected homes gave rise to a situation where exposures to airborne particles could potentially be elevated. However, swift action to remove wet materials and dry out the building structures can help to reduce moisture and humidity in flooded houses, in an effort to prevent the growth of bacteria and mould and improve indoor air quality in and around flooded areas. To test this hypothesis, field measurements were carried out during 21 March and 3 May, 2011.
Resumo:
Epidemiological research has consistently shown an association between fine and ultrafine particle concentrations, and increases in both respiratory and cardiovascular morbidity and mortality. These particles, often found in vehicle emissions outside buildings, can penetrate inside via their envelopes and mechanically ventilated systems. Indoor activities such as printing, cooking and cleaning, as well as the movement of building occupants are also an additional source of these particles. In this context, the filtration systems of mechanically ventilated buildings can reduce indoor particle concentrations. Several studies have quantified the efficiency of dry-media and electrostatic filters, but they mainly focused on the particle size range > 300 nm. Some others studied ultrafine particles but their investigations were conducted in laboratories. At this point, there is still only limited information on in situ filter efficiency and an incomplete understanding of filtration influence on I/O ratios of particle concentrations. To help address these gaps in knowledge and provide new information for the selection of appropriate filter types in office building HVAC systems, we aimed to: (1) measure particle concentrations at up and down stream flows of filter devices, as well as outdoor and indoor office buildings; (2) quantify efficiency of different filter types at different buildings; and (3) assess the impact of these filters on I/O ratios at different indoor and outdoor source operation scenarios.
Resumo:
There is significant toxicological evidence of the effects of ultrafine particles (<100nm) on human health (WHO 2005). Studies show that the number concentration of particles has been associated with adverse human health effects (Englert 2004). This work is part of a major study called ‘Ultrafine Particles form Traffic Emissions and Children’s Health’ (UPTECH), which seeks to determine the effect of the exposure to traffic related ultrafine particles on children’s health in schools (http://www.ilaqh.qut.edu.au/Misc/UPT ECH%20Home.htm). Quantification of spatial variation of particle number concentration (PNC) in a microscale environment and identification of the main affecting parameters and their contribution levels are the main aims of this analysis.
Resumo:
Frequent exposure to ultrafine particles (UFP) is associated with detrimental effects on cardiopulmonary function and health. UFP dose and therefore the associated health risk are a factor of exposure frequency, duration, and magnitude of (therefore also proximity to) a UFP emission source. Bicycle commuters using on-road routes during peak traffic times are sharing a microenvironment with high levels of motorised traffic, a major UFP emission source. Inhaled particle counts were measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing. Total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003). For bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners.
Resumo:
This paper presents a PhD program examining the formation and governance patterns of the social and spatial concentration of creative people and creative businesses in cities. It develops a typology for creative places, adding the terms ‘scene’ and ‘quarter’ to ‘clusters’, to fill in the literature gap of partial emphasis on the ‘creative clusters’ model as an organising mechanism for regional and urban policy. The framework is then applied to China, specifically to Hangzhou, a second-tier city in central eastern China that is ambitious to become a ‘national cultural and creative industries centre’. Drawing on in-depth interviews with initiators, managers and creative professionals from three cases selected respectively for scene, quarter and cluster, together with extensive documentary analysis, the paper investigates the composition of actors, characteristics of the locality and the diversity of activities of the three places. The findings demonstrate a convergence of the three terms. Furthermore, in China, planning and government intervention is the key to the governance of creative places; spontaneous development processes exist, but these need a more tolerant environment, a greater diversity of cultural forms and more time to develop. Moreover, the main business development model is still real estate based: this model needs to incorporate more mature business models and an enhanced IP protection system. Finally, the business strategies need to be combined with a self-management model for the creative class, and a collaborative governance mechanism with other stakeholders such as government, real estate developers and education providers.
Resumo:
Microenterprise development programs (MEPs) have been recognised as a valuable way to help the poor engage in micro-businesses (Green et al., 2006; Vargas, 2000), presenting a way out of poverty (Choudhury et al., 2008; Strier, 2010). Concerns have been raised however, that the benefits of MEPs often don’t reach the extremely poor (Jones et al., 2004; Midgley, 2008; Mosley and Hulme, 1998; Nawaz, 2010; Pritchett, 2006). Balancing reach of these programs with depth is a challenging task. Targeting as many poor people as possible often results in MEPs focusing on the upper or middle poor, overlooking the most challenging group. As such, MEPs have been criticised for mission drift – losing sight of the organisation’s core purpose; assisting those more likely to succeed.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) subtype C is the predominant HIV in southern Africa, and is the target of a number of recent vaccine candidates. It has been proposed that a heterologous prime/boost vaccination strategy may result in stronger, broader and more prolonged immune responses. Since HIV-1 Gag Pr55 polyprotein can assemble into virus-like particles (VLPs) which have been shown to induce a strong cellular immune response in animals, we showed that a typical southern African subtype C Pr55 protein expressed in insect cells via recombinant baculovirus could form VLPs. We then used the baculovirus-produced VLPs as a boost to a subtype C HIV-1 gag DNA prime vaccination in mice. This study shows that a low dose of HIV-1 subtype C Gag VLPs can significantly boost the immune response to a single subtype C gag DNA inoculation in mice. These results suggest a possible vaccination regimen for humans. © 2004 SGM.
Resumo:
Mycobacterium bovis BCG is considered an attractive live bacterial vaccine vector. In this study, we investigated the immune response of baboons to a primary vaccination with recombinant BCG (rBCG) constructs expressing the gag gene from a South African HIV-1 subtype C isolate, and a boost with HIV-1 subtype C Pr55 gag virus-like particles (Gag VLPs). Using an interferon enzyme-linked immunospot assay, we show that although these rBCG induced only a weak or an undetectable HIV-1 Gag-specific response on their own, they efficiently primed for a Gag VLP boost, which strengthened and broadened the immune responses. These responses were predominantly CD8+ T cell-mediated and recognised similar epitopes as those targeted by humans with early HIV-1 subtype C infection. In addition, a Gag-specific humoral response was elicited. These data support the development of HIV-1 vaccines based on rBCG and Pr55 gag VLPs. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
A baculovirus-insect cell expression system potentially provides the means to produce prophylactic HIV-1 virus-like particle (VLP) vaccines inexpensively and in large quantities. However, the system must be optimized to maximize yields and increase process efficiency. In this study, we optimized the production of two novel, chimeric HIV-1 VLP vaccine candidates (GagRT and GagTN) in insect cells. This was done by monitoring the effects of four specific factors on VLP expression: these were insect cell line, cell density, multiplicity of infection (MOI), and infection time. The use of western blots, Gag p24 ELISA, and four-factorial ANOVA allowed the determination of the most favorable conditions for chimeric VLP production, as well as which factors affected VLP expression most significantly. Both VLP vaccine candidates favored similar optimal conditions, demonstrating higher yields of VLPs when produced in the Trichoplusia ni Pro insect cell line, at a cell density of 1 × 106 cells/mL, and an infection time of 96 h post infection. It was found that cell density and infection time were major influencing factors, but that MOI did not affect VLP expression significantly. This work provides a potentially valuable guideline for HIV-1 protein vaccine optimization, as well as for general optimization of a baculovirus-based expression system to produce complex recombinant proteins. © 2009 American Institute of Chemical Engineers.
Resumo:
A DNA vaccine expressing human immunodeficiency virus type 1 (HIV-1) southern African subtype C Gag (pTHGag) and a recombinant baculovirus Pr55gag virus-like particle prepared using a subtype C Pr55gag protein (Gag VLP) was tested in a prime-boost inoculation regimen in Chacma baboons. The response of five baboons to Gag peptides in a gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay after three pTHGag immunizations ranged from 100 to 515 spot-forming units (s.f.u.) per 106 peripheral blood mononuclear cells (PBMCs), whilst the response of two baboons to the Gag VLP vaccine ranged from 415 to 465 s.f.u. per 106 PBMCs. An increase in the Gag-specific response to a range of 775-3583 s.f.u. per 106 PBMCs was achieved by boosting with Gag VLPs the five baboons that were primed with pTHGag. No improvement in Gag responses was achieved in this prime-boost inoculation regimen by increasing the number of pTHGag inoculations to six. IFN-γ responses were mapped to several peptides, some of which have been reported to be targeted by PBMCs from HIV-1 subtype C-infected individuals. Gag VLPs, given as a single-modality regimen, induced a predominantly CD8+ T-cell IFN-γ response and interleukin-2 was a major cytokine within a mix of predominantly Th1 cytokines produced by a DNA-VLP prime-boost modality. The prime-boost inoculation regimen induced high serum p24 antibody titres in all baboons, which were several fold above that induced by the individual vaccines. Overall, this study demonstrated that these DNA prime/VLP boost vaccine regimens are highly immunogenic in baboons, inducing high-magnitude and broad multifunctional responses, providing support for the development of these products for clinical trials. © 2008 SGM.
Resumo:
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Resumo:
One of the next great challenges of cell biology is the determination of the enormous number of protein structures encoded in genomes. In recent years, advances in electron cryo-microscopy and high-resolution single particle analysis have developed to the point where they now provide a methodology for high resolution structure determination. Using this approach, images of randomly oriented single particles are aligned computationally to reconstruct 3-D structures of proteins and even whole viruses. One of the limiting factors in obtaining high-resolution reconstructions is obtaining a large enough representative dataset ($>100,000$ particles). Traditionally particles have been manually picked which is an extremely labour intensive process. The problem is made especially difficult by the low signal-to-noise ratio of the images. This paper describes the development of automatic particle picking software, which has been tested with both negatively stained and cryo-electron micrographs. This algorithm has been shown to be capable of selecting most of the particles, with few false positives. Further work will involve extending the software to detect differently shaped and oriented particles.
A particle-based micromechanics approach to simulate structural changes of plant cells during drying
Resumo:
This paper is concerned with applying a particle-based approach to simulate the micro-level cellular structural changes of plant cells during drying. The objective of the investigation was to relate the micro-level structural properties such as cell area, diameter and perimeter to the change of moisture content of the cell. Model assumes a simplified cell which consists of two basic components, cell wall and cell fluid. The cell fluid is assumed to be a Newtonian fluid with higher viscosity compared to water and cell wall is assumed to be a visco-elastic solid boundary located around the cell fluid. Cell fluid is modelled with Smoothed Particle Hydrodynamics (SPH) technique and for the cell wall; a Discrete Element Method (DEM) is used. The developed model is two-dimensional, but accounts for three-dimensional physical properties of real plant cells. Drying phenomena is simulated as fluid mass reductions and the model is used to predict the above mentioned structural properties as a function of cell fluid mass. Model predictions are found to be in fairly good agreement with experimental data in literature and the particle-based approach is demonstrated to be suitable for numerical studies of drying related structural deformations. Also a sensitivity analysis is included to demonstrate the influence of key model parameters to model predictions.
Resumo:
Over the past two decades, flat-plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere [1-6]. The ratio of terrestrial to extraterrestrial material and the nature of material collected may vary over observable time scales. Variations in particle number density can be important since the earth’s atmospheric radiation balance, and therefore the earth’s climate, can be influenced by articulate absorption and scattering of radiation from the sun and earth [7-9]. In order to assess the number density of solid particles in the stratosphere, we have examined a representative fraction of the so1id particles from two flat-plate collection surfaces, whose collection dates are separated in time by 5 years.