182 resultados para organizational trust
Resumo:
This paper examines how teams and teamwork research have been conceptualised in the fields of sport psychology and organizational psychology. Specifically, it provides a close inspection of the general theoretical assumptions that inhere in the two disciplines. The results of a discursive analysis of research literature suggest that the fields have significantly different ways of conceptualising teams and teamwork and that conceptual borrowing may prove fruitful. A key argument is however, that in order for meaningful cross-fertilisation to take place a sound understanding of these differences is necessary. Working from this premise, the essential differences between sport and organizational approaches to teams are outlined. The paper is concluded with a discussion of contributions that organizational psychology can make to understandings of sport-oriented teams.
Resumo:
A Delay Tolerant Network (DTN) is a dynamic, fragmented, and ephemeral network formed by a large number of highly mobile nodes. DTNs are ephemeral networks with highly mobile autonomous nodes. This requires distributed and self-organised approaches to trust management. Revocation and replacement of security credentials under adversarial influence by preserving the trust on the entity is still an open problem. Existing methods are mostly limited to detection and removal of malicious nodes. This paper makes use of the mobility property to provide a distributed, self-organising, and scalable revocation and replacement scheme. The proposed scheme effectively utilises the Leverage of Common Friends (LCF) trust system concepts to revoke compromised security credentials, replace them with new ones, whilst preserving the trust on them. The level of achieved entity confidence is thereby preserved. Security and performance of the proposed scheme is evaluated using an experimental data set in comparison with other schemes based around the LCF concept. Our extensive experimental results show that the proposed scheme distributes replacement credentials up to 35% faster and spreads spoofed credentials of strong collaborating adversaries up to 50% slower without causing any significant increase on the communication and storage overheads, when compared to other LCF based schemes.