193 resultados para order


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fractional Fokker-Planck equation is an important physical model for simulating anomalous diffusions with external forces. Because of the non-local property of the fractional derivative an interesting problem is to explore high accuracy numerical methods for fractional differential equations. In this paper, a space-time spectral method is presented for the numerical solution of the time fractional Fokker-Planck initial-boundary value problem. The proposed method employs the Jacobi polynomials for the temporal discretization and Fourier-like basis functions for the spatial discretization. Due to the diagonalizable trait of the Fourier-like basis functions, this leads to a reduced representation of the inner product in the Galerkin analysis. We prove that the time fractional Fokker-Planck equation attains the same approximation order as the time fractional diffusion equation developed in [23] by using the present method. That indicates an exponential decay may be achieved if the exact solution is sufficiently smooth. Finally, some numerical results are given to demonstrate the high order accuracy and efficiency of the new numerical scheme. The results show that the errors of the numerical solutions obtained by the space-time spectral method decay exponentially.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly, domestic violence is being treated as a child protection issue, and children affected by domestic violence are recognised as experiencing a form of child abuse. Domestic violence protection order legislation – as a key legal response to domestic violence – may offer an important legal option for the protection of children affected by domestic violence. In this article, we consider the research that establishes domestic violence as a form of child abuse, and review the provisions of State and Territory domestic violence protection order legislation to assess whether they demonstrate an adequate focus on the protection of children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Achieving knowledge-based urban development (KBUD) profoundly depends on not only encouraging the development of economic activities, but also strengthening the societal, environmental and governance bases of city-regions. In recent years, a number of global city-regions have been investigated from the angle of this multidimensional perspective, which has provided a new comprehension in the development processes of primate city-regions. However, there is a knowledge gap in understanding how KBUD works in the second-order city-region (SOCR) context. This warrants more attention as SOCRs potentially help secure balanced development and territorial cohesion. This paper aims to empirically investigate KBUD performances of SOCRs in order to generate new insights. An assessment framework is utilised in the Finnish context, where the findings provide a nationally benchmarked snapshot of the degree of achievements of SOCRs based on numerous KBUD performance areas. The results shed light on the unique Finnish urban and regional development process, and provide lessons for other SOCRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orientational distribution of a set of stable nitroxide radicals in aligned liquid crystals 5CB (nematic) and 8CB (smectic A) was studied in detail by numerical simulation of EPR spectra. The order parameters up to the 10th rank were measured. The directions of the principal orientation axes of the radicals were determined. It was shown that the ordering of the probe molecules is controlled by their interaction with the matrix molecules more than the inherent geometry of the probes themselves. The rigid fused phenanthrene-based (A5) and 2-azaphenalene (A4) nitroxides as well as the rigid core elongated C11 and 5α-cholestane (CLS) nitroxides were found to be most sensitive to the orientation of the liquid crystal matrixes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many physical processes appear to exhibit fractional order behavior that may vary with time and/or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider a new space–time variable fractional order advection–dispersion equation on a finite domain. The equation is obtained from the standard advection–dispersion equation by replacing the first-order time derivative by Coimbra’s variable fractional derivative of order α(x)∈(0,1]α(x)∈(0,1], and the first-order and second-order space derivatives by the Riemann–Liouville derivatives of order γ(x,t)∈(0,1]γ(x,t)∈(0,1] and β(x,t)∈(1,2]β(x,t)∈(1,2], respectively. We propose an implicit Euler approximation for the equation and investigate the stability and convergence of the approximation. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space-fractional operators have been used with success in a variety of practical applications to describe transport processes in media characterised by spatial connectivity properties and high structural heterogeneity altering the classical laws of diffusion. This study provides a systematic investigation of the spatio-temporal effects of a space-fractional model in cardiac electrophysiology. We consider a simplified model of electrical pulse propagation through cardiac tissue, namely the monodomain formulation of the Beeler-Reuter cell model on insulated tissue fibres, and obtain a space-fractional modification of the model by using the spectral definition of the one-dimensional continuous fractional Laplacian. The spectral decomposition of the fractional operator allows us to develop an efficient numerical method for the space-fractional problem. Particular attention is paid to the role played by the fractional operator in determining the solution behaviour and to the identification of crucial differences between the non-fractional and the fractional cases. We find a positive linear dependence of the depolarization peak height and a power law decay of notch and dome peak amplitudes for decreasing orders of the fractional operator. Furthermore, we establish a quadratic relationship in conduction velocity, and quantify the increasingly wider action potential foot and more pronounced dispersion of action potential duration, as the fractional order is decreased. A discussion of the physiological interpretation of the presented findings is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new type of high-order elements that incorporates the mesh-free Galerkin formulations into the framework of finite element method. Traditional polynomial interpolation is replaced by mesh-free interpolations in the present high-order elements, and the strain smoothing technique is used for integration of the governing equations based on smoothing cells. The properties of high-order elements, which are influenced by the basis function of mesh-free interpolations and boundary nodes, are discussed through numerical examples. It can be found that the basis function has significant influence on the computational accuracy and upper-lower bounds of energy norm, when the strain smoothing technique retains the softening phenomenon. This new type of high-order elements shows good performance when quadratic basis functions are used in the mesh-free interpolations and present elements prove advantageous in adaptive mesh and nodes refinement schemes. Furthermore, it shows less sensitive to the quality of element because it uses the mesh-free interpolations and obeys the Weakened Weak (W2) formulation as introduced in [3, 5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Wavefront-guided Laser-assisted in situ keratomileusis (LASIK) is a widespread and effective surgical treatment for myopia and astigmatic correction but whether it induces higher-order aberrations remains controversial. The study was designed to evaluate the changes in higher-order aberrations after wavefront-guided ablation with IntraLase femtosecond laser in moderate to high astigmatism. Methods Twenty-three eyes of 15 patients with moderate to high astigmatism (mean cylinder, −3.22 ± 0.59 dioptres) aged between 19 and 35 years (mean age, 25.6 ± 4.9 years) were included in this prospective study. Subjects with cylinder ≥ 1.5 and ≤2.75 D were classified as moderate astigmatism while high astigmatism was ≥3.00 D. All patients underwent a femtosecond laser–enabled (150-kHz IntraLase iFS; Abbott Medical Optics Inc) wavefront-guided ablation. Uncorrected (UDVA), corrected (CDVA) distance visual acuity in logMAR, keratometry, central corneal thickness (CCT) and higher-order aberrations (HOAs) over a 6 mm pupil, were assessed before and 6 months, postoperatively. The relationship between postoperative change in HOA and preoperative mean spherical equivalent refraction, mean astigmatism, and postoperative CCT were tested. Results At the last follow-up, the mean UDVA was increased (P < 0.0001) but CDVA remained unchanged (P = 0.48) and no eyes lost ≥2 lines of CDVA. Mean spherical equivalent refraction was reduced (P < 0.0001) and was within ±0.50 D range in 61 % of eyes. The average corneal curvature was flatter by 4 D and CCT was reduced by 83 μm (P < 0.0001, for all), postoperatively. Coma aberrations remained unchanged (P = 0.07) while the change in trefoil (P = 0.047) postoperatively, was not clinically significant. The 4th order HOAs (spherical aberration and secondary astigmatism) and the HOA root mean square (RMS) increased from −0.18 ± 0.07 μm, 0.04 ± 0.03 μm and 0.47 ± 0.11 μm, preoperatively, to 0.33 ± 0.19 μm (P = 0.004), 0.21 ± 0.09 μm (P < 0.0001) and 0.77 ± 0.27 μm (P < 0.0001), six months postoperatively. The change in spherical aberration after the procedure increased with an increase in the degree of preoperative myopia. Conclusions Wavefront-guided IntraLASIK offers a safe and effective option for vision and visual function improvement in astigmatism. Although, reduction of HOA is possible in a few eyes, spherical-like aberrations are increased in majority of the treated eyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The projection construction has been used to construct semifields of odd characteristic using a field and a twisted semifield [Commutative semi-fields from projection mappings, Designs, Codes and Cryptography, 61 (2011), 187{196]. We generalize this idea to a projection construction using two twisted semifields to construct semifields of odd characteristic. Planar functions and semifields have a strong connection so this also constructs new planar functions.