193 resultados para mathematical reasoning
Resumo:
Research on the achievement of rural and remote students in science and mathematics is located within a context of falling levels of participation in physical science and mathematics courses in Australian schools, and underrepresentation of rural students in higher education. International studies such as the Programme of International Student Assessment (PISA), have reported lower levels of mathematical and scientific literacy in Australian students from rural and remote schools (Thomson et al, 2011). The SiMERR national survey of science, mathematics and ICT education in rural and regional Australia (Lyons et al, 2006) identified factors affecting student achievement in rural and remote schools. Many of the issues faced by rural and remote students in their schools are likely to have implications on their university enrolments in science, technology, engineering and mathematics (STEM) courses. For example, rural and remote students are less likely to attend university in general than their city counterparts and higher university attrition rates have been reported for remote students nationally. This paper examines the responses of a sample of rural/remote Australian first year STEM students at Australian universities to two questions. These related to their intentions to complete the course; and whether -and if so, why- they had ever considered withdrawing from their course. Results indicated that rural students who were still in their course by the end of first year were no more or less likely to consider withdrawing than were their peers from more populous centres. However, almost 20% of the rural cohort had considered withdrawing at some stage in their course, and their explanations provide insights into the reasoning of those who may not persist with their courses at university. These results, in the context of the greater attrition rate of remote students from university, point to the need to identify factors that positively impact on rural and remote students’ interest and achievement in science and mathematics. It also highlights a need for future research into the particular issues remote students may face in deciding whether or not to do science at the two key transition points of senior school and university/TAFE studies, and whether or not to persist in their tertiary studies. This paper is positioned at the intersection of two problems in Australian education. The first is a context of falling levels of participation in physical science and mathematics courses in Australian universities. The second is persistent inequitable access to, and retention in, tertiary education for students from rural and remote areas. Despite considerable research attention to both of these areas over recent years these problems have thus far proved to be intractable. This paper therefore aims to briefly review the relevant Australian literature pertaining to these issues; that is, declining STEM enrolments, and the underrepresentation and retention of rural/remote students in higher education. Given the related problems in these two overlapping domains, we then explore the views of first year rural students enrolled in courses, in relation to their intentions of withdrawing (or not) and the associated reasons for their views.
Resumo:
This section focuses on systems of reasoning that imagine youth as a unified whole, one that can be researched, talked about, planned for, and managed. Even research that focuses on individuals or specific contexts depends on and reproduces ideas of youth as an identifiable population. This section interrogates the rules and scaffolding of discourses that construct the social spaces in which we problematize and study youth in society. This introduction will set the agenda by addressing four elements of this process: the first addresses the rise of some of the crucial elements of contemporary governance, the instrument and practices through which the notion of the population was able to take shape. The second examines the rise of the personage of “the child,” and how new forms of governance not only utilized this new identity for the purposes of ongoing social management, but also organized its differentiation into a growing array of new social and administrative categories. The third specifically addresses “youth,” examining its various predecessors as targets for moral concern, as well as some of the recent cultural triggers for its formation. Finally, there is an assessment of the contemporary governance of populations of youth, based as it is around its twin existence as a governmental object, a target for an almost endless array of social, educational, legal, and psychological concerns and interventions, but also as an identity, a set of practices of the self.
Resumo:
Healthy transparent cornea depends upon the regulation of fluid, nutrient and oxygen transport through the tissue to sustain cell metabolism and other critical processes for normal functioning. This research considers the corneal geometry and investigates oxygen distribution using a two-dimensional Monod kinetic model, showing that previous studies make assumptions that lead to predictions of near-anoxic levels of oxygen tension in the limbal regions of the cornea. It also considers the comparison of experimental spatial and temporal data with the predictions of novel mathematical models with respect to distributed mitotic rates during corneal epithelial wound healing.
Resumo:
This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.
Resumo:
Concept inventory tests are one method to evaluate conceptual understanding and identify possible misconceptions. The multiple-choice question format, offering a choice between a correct selection and common misconceptions, can provide an assessment of students' conceptual understanding in various dimensions. Misconceptions of some engineering concepts exist due to a lack of mental frameworks, or schemas, for these types of concepts or conceptual areas. This study incorporated an open textual response component in a multiple-choice concept inventory test to capture written explanations of students' selections. The study's goal was to identify, through text analysis of student responses, the types and categorizations of concepts in these explanations that had not been uncovered by the distractor selections. The analysis of the textual explanations of a subset of the discrete-time signals and systems concept inventory questions revealed that students have difficulty conceptually explaining several dimensions of signal processing. This contributed to their inability to provide a clear explanation of the underlying concepts, such as mathematical concepts. The methods used in this study evaluate students' understanding of signals and systems concepts through their ability to express understanding in written text. This may present a bias for students with strong written communication skills. This study presents a framework for extracting and identifying the types of concepts students use to express their reasoning when answering conceptual questions.
Resumo:
The phosphine distribution in a cylindrical silo containing grain is predicted. A three-dimensional mathematical model, which accounts for multicomponent gas phase transport and the sorption of phosphine into the grain kernel is developed. In addition, a simple model is presented to describe the death of insects within the grain as a function of their exposure to phosphine gas. The proposed model is solved using the commercially available computational fluid dynamics (CFD) software, FLUENT, together with our own C code to customize the solver in order to incorporate the models for sorption and insect extinction. Two types of fumigation delivery are studied, namely, fan- forced from the base of the silo and tablet from the top of the silo. An analysis of the predicted phosphine distribution shows that during fan forced fumigation, the position of the leaky area is very important to the development of the gas flow field and the phosphine distribution in the silo. If the leak is in the lower section of the silo, insects that exist near the top of the silo may not be eradicated. However, the position of a leak does not affect phosphine distribution during tablet fumigation. For such fumigation in a typical silo configuration, phosphine concentrations remain low near the base of the silo. Furthermore, we find that half-life pressure test readings are not an indicator of phosphine distribution during tablet fumigation.
Resumo:
While many studies have explored conditions and consequences of information systems adoption and use, few have focused on the final stages of the information system lifecycle. In this paper, I develop a theoretical and an initial empirical contribution to understanding individuals’ intentions to discontinue the use of an information system. This understanding is important because it yields implications about maintenance, retirement, and users’ switching decisions, which ultimately can affect work performance, system effectiveness, and return on technology investments. In this paper, I offer a new conceptualization of factors determining users’ intentions to discontinue the use of information systems. I then report on a preliminary empirical test of the model using data from a field study of information system users in a promotional planning routine in a large retail organization. Results from the empirical analysis provide first empirical support for the theoretical model. I discuss the work’s implications for theory on information systems continuance and dual-factor logic in information system use. I also provide suggestions for managers dealing with cessation of information systems and broader work routine change in organizations due to information system end-of-life decisions.
Resumo:
An important application of thermal storage is solar energy for power generation or process heating. Low temperature thermal storage in a packed rock bed is considered best option for thermal storage for solar drying applications. In this paper, mathematical formulations for conical and cylindrical rock bed storage tanks have been developed. The model equations are solved numerically for charging/discharging cycles. From the simulated results, it was observed that for the same aspect ratio between the diameter and the length of the thermal storages, the conical thermal storage had better performance. The temperature distribution was found to be more uniform in the truncated conical shape rock bed storage. Also, the pressure drop over long period of time in the conical thermal storage was lower than that of the cylindrical thermal storage. Hence, the amount of power required from a centrifugal fan was lower.
Resumo:
The aim of this study was to identify and describe the types of errors in clinical reasoning that contribute to poor diagnostic performance at different levels of medical training and experience. Three cohorts of subjects, second- and fourth- (final) year medical students and a group of general practitioners, completed a set of clinical reasoning problems. The responses of those whose scores fell below the 25th centile were analysed to establish the stage of the clinical reasoning process - identification of relevant information, interpretation or hypothesis generation - at which most errors occurred and whether this was dependent on problem difficulty and level of medical experience. Results indicate that hypothesis errors decrease as expertise increases but that identification and interpretation errors increase. This may be due to inappropriate use of pattern recognition or to failure of the knowledge base. Furthermore, although hypothesis errors increased in line with problem difficulty, identification and interpretation errors decreased. A possible explanation is that as problem difficulty increases, subjects at all levels of expertise are less able to differentiate between relevant and irrelevant clinical features and so give equal consideration to all information contained within a case. It is concluded that the development of clinical reasoning in medical students throughout the course of their pre-clinical and clinical education may be enhanced by both an analysis of the clinical reasoning process and a specific focus on each of the stages at which errors commonly occur.
Resumo:
This study sought to assess the extent to which the entry characteristics of students in a graduate-entry medical programme predict the subsequent development of clinical reasoning ability. Subjects comprised 290 students voluntarily recruited from three successive cohorts of the University of Queensland's MBBS Programme. Clinical reasoning was measured once a year over a period of three years using two methods, a set of 10 Clinical Reasoning Problems (CRPs) and the Diagnostic Thinking Inventory (DTI). Data on gender, age at entry into the programme, nature of primary degree, scores on selection criteria (written examination plus interview) and academic performance in the first two years of the programme were recorded for each student, and their association with clinical reasoning skill analysed using univariate and multivariate analysis. Univariate analysis indicated significant associations between CRP score, gender and primary degree with a significant but small association between DTI and interview score. Stage of progression through the programme was also an important predictor of performance on both indicators. Subsequent multivariate analysis suggested that female gender is a positive predictor of CRP score independently of the nature of a subject's primary degree and stage of progression through the programme, although these latter two variables are interdependent. Positive predictors of clinical reasoning skill are stage of progression through the MBBS programme, female gender and interview score. Although the nature of a student's primary degree is important in the early years of the programme, evidence suggests that by graduation differences between students' clinical reasoning skill due to this factor have been resolved.
Resumo:
The aim of this study was to identify and describe the clinical reasoning characteristics of diagnostic experts. A group of 21 experienced general practitioners were asked to complete the Diagnostic Thinking Inventory (DTI) and a set of 10 clinical reasoning problems (CRPs) to evaluate their clinical reasoning. Both the DTI and the CRPs were scored, and the CRP response patterns of each GP examined in terms of the number and type of errors contained in them. Analysis of these data showed that six GPs were able to reach the correct diagnosis using significantly less clinical information than their colleagues. These GPs also made significantly fewer interpretation errors but scored lower on both the DTI and the CRPs. Additionally, this analysis showed that more than 20% of misdiagnoses occurred despite no errors being made in the identification and interpretation of relevant clinical information. These results indicate that these six GPs diagnose efficiently, effectively and accurately using relatively few clinical data and can therefore be classified as diagnostic experts. They also indicate that a major cause of misdiagnoses is failure to properly integrate clinical data. We suggest that increased emphasis on this step in the reasoning process should prove beneficial to the development of clinical reasoning skill in undergraduate medical students.
Resumo:
The aim of this study was to develop and trial a method to monitor the evolution of clinical reasoning in a PBL curriculum that is suitable for use in a large medical school. Termed Clinical Reasoning Problems (CRPs), it is based on the notion that clinical reasoning is dependent on the identification and correct interpretation of certain critical clinical features. Each problem consists of a clinical scenario comprising presentation, history and physical examination. Based on this information, subjects are asked to nominate the two most likely diagnoses and to list the clinical features that they considered in formulating their diagnoses, indicating whether these features supported or opposed the nominated diagnoses. Students at different levels of medical training completed a set of 10 CRPs as well as the Diagnostic Thinking Inventory, a self-reporting questionnaire designed to assess reasoning style. Responses were scored against those of a reference group of general practitioners. Results indicate that the CRPs are an easily administered, reliable and valid assessment of clinical reasoning, able to successfully monitor its development throughout medical training. Consequently, they can be employed to assess clinical reasoning skill in individual students and to evaluate the success of undergraduate medical schools in providing effective tuition in clinical reasoning.