359 resultados para hybrid place
Collaborative research into the affordances of place for primary school children’s literacy learning
Resumo:
In the context of culturally diverse high poverty areas of Australia, we have conducted collaborative research with teachers and students in a primary school for more than a decade. Teachers have been exploring the affordances of place‐based pedagogies (Gruenewald & Smith, 2008) for the development of students’ spatial literacies and their understandings of the politics of places and built environments (Comber, Nixon, Ashmore, Loo & Cook, 2006; Comber, Thomson and Wells, 2001). This paper reports on a project in which the affordances of placedbased pedagogy are being explored through teacher inquiries and classroom‐based design experiments (Cobb, Confrey, di Sessa, Lehrer & Schauble, 2003). Located within a large‐scale urban renewal project in which houses are being demolished and families relocated, the original school has been replaced by a larger school that serves a population from a wider area. In this paper we draw on the study to consider the challenges of working with teachers and primary school students to study innovative ideas and practices in educational research. Specifically we consider issues raised by collaborative studies of the affordances of cross curricular projects focusing on social and environmental change to engage students in academic learning and expand their literate repertoires in a changing policy climate.
Resumo:
This study explored the dynamic performance of an innovative Hybrid Composite Floor Plate System (HCFPS), composed of Polyurethane (PU) core, outer layers of Glass–fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Experimental testing included heel impact and walking tests for 3200 mm span HCFPS panels. FE models of the HCFPS were developed using the FE program ABAQUS and validated with experimental results. HCFPS is a light-weight high frequency floor system with excellent damping ratio of 5% (bare floor) due to the central PU core. Parametric studies were conducted using the validated FE models to investigate the dynamic response of the HCFPS and to identify characteristics that influence acceleration response under human induced vibration in service. This vibration performance was compared with recommended acceptable perceptibility limits. The findings of this study show that HCFPS can be used in residential and office buildings as a light-weight floor system, which does not exceed the perceptible thresholds due to human induced vibrations.
Resumo:
This paper aims to inform design strategies for smart space technology to enhance libraries as environments for co-working and informal social learning. The focus is on understanding user motivations, behaviour, and activities in the library when there is no programmed agenda. The study analyses gathered data over five months of ethnographic research at ‘The Edge’ – a bookless library space at the State Library of Queensland in Brisbane, Australia, that is explicitly dedicated to co-working, social learning, peer collaboration, and creativity around digital culture and technology. The results present five personas that embody people’s main usage patterns as well as motivations, attitudes, and perceived barriers to social learning. It appears that most users work individually or within pre-organised groups, but usually do not make new connections with co-present, unacquainted users. Based on the personas, four hybrid design dimensions are suggested to improve the library as a social interface for shared learning encounters across physical and digital spaces. The findings in this paper offer actionable knowledge for managers, decision makers, and designers of technology-enhanced library spaces and similar collaboration and co-working spaces.
Resumo:
This study explored the flexural performance of an innovative Hybrid Composite Floor Plate System (HCFPS), comprised of Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Bending and cyclic loading tests for the HCFPS panels and a comprehensive material testing program for component materials were carried out. HCFPS test panel exhibited ductile behaviour and flexural failure with a deflection ductility index of 4. FE models of HCFPS were developed using the program ABAQUS and validated with experimental results. The governing criteria of stiffness and flexural performance of HCFPS can be improved by enhancing the properties of component materials. HCFPS is 50-70% lighter in weight when compared to conventional floor systems. This study shows that HCFPS can be used for floor structures in commercial and residential buildings as an alternative to conventional steel concrete composite systems.
Resumo:
Advances in technology introduce new application areas for sensor networks. Foreseeable wide deployment of mission critical sensor networks creates concerns on security issues. Security of large scale densely deployed and infrastructure less wireless networks of resource limited sensor nodes requires efficient key distribution and management mechanisms. We consider distributed and hierarchical wireless sensor networks where unicast, multicast and broadcast type of communications can take place. We evaluate deterministic, probabilistic and hybrid type of key pre-distribution and dynamic key generation algorithms for distributing pair-wise, group-wise and network-wise keys.
Resumo:
This research examines the effects of expectation (perceived attractiveness) on satisfaction, place identity, and place dependence. Place identity and place dependence are viewed as relational components of choice and relate to deeper needs. This study proposes that these two relational components depend on transactional expectations, which are emergent and determined by past experiences and visitor goals. In a theoretically elaborated and tested Structural Equation Model (SEM) this study assumes that these relationships vary according to intentions to return. The study addresses the conditions under which loyalty intentions influence the deeper place attachments (place identity and place dependence) that visitors associate with attractive cultural and natural destinations. The model is tested on a sample of 504 international tourists visiting Tanzania during fall 2010, and explains 59% of variance in the predicted dependent variables. The results are linked to a discussion on loyalty programs.
Resumo:
Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.
Resumo:
We demonstrated for the first time by ab initio density functional calculation and molecular dynamics simulation that C0.5(BN)0.5 armchair single-walled nanotubes (NT) are gapless semiconductors and can be spontaneously formed via the hybrid connection of graphene/BN Nanoribbons (GNR/BNNR) at room temperature. The direct synthesis of armchair C0.5(BN)0.5 via the hybrid connection of GNR/BNNR is predicted to be both thermodynamically and dynamically stable. Such novel armchair C0.5(BN)0.5 NTs possess enhanced conductance as that observed in GNRs. Additionally, the zigzag C0.5(BN)0.5 SWNTs are narrow band gap semiconductors, which may have potential application for light emission. In light of recent experimental progress and the enhanced degree of control in the synthesis of GNRs and BNNR, our results highlight an interesting avenue for synthesizing a novel specific type of C0.5(BN)0.5 nanotube (gapless or narrow direct gap semiconductor), with potentially important applications in BNC-based nanodevices.
Resumo:
We demonstrated for the first time by large-scale ab initio calculations that a graphene/titania interface in the ground electronic state forms a charge-transfer complex due to the large difference of work functions between graphene and titania, leading to substantial hole doping in graphene. Interestingly, electrons in the upper valence band can be directly excited from graphene to the conduction band, that is, the 3d orbitals of titania, under visible light irradiation. This should yield well-separated electron−hole pairs, with potentially high photocatalytic or photovoltaic performance in hybrid graphene and titania nanocomposites. Experimental wavelength-dependent photocurrent generation of the graphene/titania photoanode demonstrated noticeable visible light response and evidently verified our ab initio prediction.
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
This paper addresses the question of how to open up pathways and build capacity to facilitate the movement towards sustainable sub-tropical cities. The focus is on outlining a collaborative planning and co-design process that can help catalyse the emergence of sustainable place-habitats and so re-weave and colour anew the tapestry of our sub-tropical cities. Cities are portrayed as self-organising complex adaptive system phenomena, being constantly re-shaped by local and global social-political, environmental, cultural and economic forces as well as planning regimes. While constructing a sustainable city is at essence a design process incorporating new sustainable practices and legislation to reinforce their use, these steps are necessary but not sufficient. Sustainable sub-tropical city-making could be re-thought as a dreaming-re-storying process. This paper explores a new co-design process, which can channel collaborative efforts around re-inventing sustainable place-habitats across the cityscape. A further outcome of this co-design process is the alignment of the emergent design principles and planning actions that can trigger the re-storying of a new sustainable sub-tropical city. Besides a new co-design process, we also advocate the building of sub-tropical city learning networks to facilitate the cross-fertilization for Dreaming sustainable sub-tropical cities.
Resumo:
The perennial issues of student engagement, success and retention in higher education continue to attract attention as the salience of teaching and learning funding and performance measures has increased. This paper addresses the question of the responsibility or place of higher education institutions (HEIs) for initiating, planning, managing and evaluating their student engagement, success and retention programs and strategies. An evaluation of the current situation indicates the need for a sophisticated approach to assessing the ability of HEIs to proactively design programs and practices that enhance student engagement. An approach—the Student Engagement Success and Retention Maturity Model (SESR-MM)—is proposed and its development, current status, and relationship with and possible use in benchmarking are discussed.
Resumo:
In the modern built environment, building construction and demolition consume a large amount of energy and emits greenhouse gasses due to widely used conventional construction materials such as reinforced and composite concrete. These materials consume high amount of natural resources and possess high embodied energy. More energy is required to recycle or reuse such materials at the cessation of use. Therefore, it is very important to use recyclable or reusable new materials in building construction in order to conserve natural resources and reduce the energy and emissions associated with conventional materials. Advancements in materials technology have resulted in the introduction of new composite and hybrid materials in infrastructure construction as alternatives to the conventional materials. This research project has developed a lightweight and prefabricatable Hybrid Composite Floor Plate System (HCFPS) as an alternative to conventional floor system, with desirable properties, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fiber Reinforced Cement (GRC) and steel laminates at tensile regions. This research work explored the structural adequacy and performance characteristics of hybridised GRC, PU and steel laminate for the development of HCFPS. Performance characteristics of HCFPS were investigated using Finite Element (FE) method simulations supported by experimental testing. Parametric studies were conducted to develop the HCFPS to satisfy static performance using sectional configurations, spans, loading and material properties as the parameters. Dynamic response of HCFPS floors was investigated by conducting parametric studies using material properties, walking frequency and damping as the parameters. Research findings show that HCFPS can be used in office and residential buildings to provide acceptable static and dynamic performance. Design guidelines were developed for this new floor system. HCFPS is easy to construct and economical compared to conventional floor systems as it is lightweight and prefabricatable floor system. This floor system can also be demounted and reused or recycled at the cessation of use due to its component materials.
Resumo:
Understanding network traffic behaviour is crucial for managing and securing computer networks. One important technique is to mine frequent patterns or association rules from analysed traffic data. On the one hand, association rule mining usually generates a huge number of patterns and rules, many of them meaningless or user-unwanted; on the other hand, association rule mining can miss some necessary knowledge if it does not consider the hierarchy relationships in the network traffic data. Aiming to address such issues, this paper proposes a hybrid association rule mining method for characterizing network traffic behaviour. Rather than frequent patterns, the proposed method generates non-similar closed frequent patterns from network traffic data, which can significantly reduce the number of patterns. This method also proposes to derive new attributes from the original data to discover novel knowledge according to hierarchy relationships in network traffic data and user interests. Experiments performed on real network traffic data show that the proposed method is promising and can be used in real applications. Copyright2013 John Wiley & Sons, Ltd.
Resumo:
The numerical analysis method of cracking in cast-in-place reinforced concrete slabs is presented. T he results agree w ell with the actual conditions. T he current state of knowledge and some new research findings on crack-control are introduced such as increasing the quantities of the distribution steel, adopting fibre reinforced concrete etc. Some recommended crack-control procedures used in design construction is presented based on the investigation and study of cracking in a frame structure.