362 resultados para human gait analysis
Resumo:
Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
Resumo:
This paper describes an innovative platform that facilitates the collection of objective safety data around occurrences at railway level crossings using data sources including forward-facing video, telemetry from trains and geo-referenced asset and survey data. This platform is being developed with support by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper provides a description of the underlying accident causation model, the development methodology and refinement process as well as a description of the data collection platform. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The three-dimensional data used for modelling thigh and buttock geometry were taken on one 95th percentile male subject, representing the bivariate percentiles of the combined hip breadth (seated) and buttock-to-knee length distributions of a selected Australian and US population. A thigh-buttock surface shell based on this data was generated for the analytic model. A 6mm neoprene layer was offset from the shell to account for the compression of body tissue expected through sitting in a seat. The thigh-buttock model is therefore made of two layers, covering thin to moderate thigh and buttock proportions, but not more fleshy sizes. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour in a Neo-Hookean material model. Finite element (FE) analysis was performed in ANSYS V13 WB (Canonsburg, USA). It is hypothesized that the presented FE simulation delivers a valid result, compared to a standard SAE physical test and the real phenomenon of human-seat indentation. The analytical model is based on the CAD assembly of a Ford Territory seat. The optimized seat frame, suspension and foam pad CAD data were transformed and meshed into FE models and indented by the two layer, soft surface human FE model. Converging results with the least computational effort were achieved for a bonded connection between cushion and seat base as well as cushion and suspension, no separation between neoprene and indenter shell and a frictional connection between cushion pad and neoprene. The result is compared to a previous simulation of an indentation with a hard shell human finite-element model of equal geometry, and to the physical indentation result, which is approached with very high fidelity. We conclude that (a) SAE composite buttock form indentation of a suspended seat cushion can be validly simulated in a FE model of merely similar geometry, but using a two-layer hard/soft structure. (b) Human-seat indentation of a suspended seat cushion can be validly simulated with a simplified human buttock-thigh model for a selected anthropomorphism.
Resumo:
Summary: More than ever before contemporary societies are characterised by the huge amounts of data being transferred. Authorities, companies, academia and other stakeholders refer to Big Data when discussing the importance of large and complex datasets and developing possible solutions for their use. Big Data promises to be the next frontier of innovation for institutions and individuals, yet it also offers possibilities to predict and influence human behaviour with ever-greater precision
Resumo:
Intra-host sequence data from RNA viruses have revealed the ubiquity of defective viruses in natural viral populations, sometimes at surprisingly high frequency. Although defective viruses have long been known to laboratory virologists, their relevance in clinical and epidemiological settings has not been established. The discovery of long-term transmission of a defective lineage of dengue virus type 1 (DENV-1) in Myanmar, first seen in 2001, raised important questions about the emergence of transmissible defective viruses and their role in viral epidemiology. By combining phylogenetic analyses and dynamical modelling, we investigate how evolutionary and ecological processes at the intra-host and inter-host scales shaped the emergence and spread of the defective DENV-1 lineage. We show that this lineage of defective viruses emerged between June 1998 and February 2001, and that the defective virus was transmitted primarily through co-transmission with the functional virus to uninfected individuals. We provide evidence that, surprisingly, this co-transmission route has a higher transmission potential than transmission of functional dengue viruses alone. Consequently, we predict that the defective lineage should increase overall incidence of dengue infection, which could account for the historically high dengue incidence reported in Myanmar in 2001-2002. Our results show the unappreciated potential for defective viruses to impact the epidemiology of human pathogens, possibly by modifying the virulence-transmissibility trade-off, or to emerge as circulating infections in their own right. They also demonstrate that interactions between viral variants, such as complementation, can open new pathways to viral emergence.
Resumo:
This paper provides an overview of the regulatory developments in the UK which impact on the use of in vitro fertilization (IVF) and embryo screening techniques for the creation of “saviour siblings.” Prior to the changes implemented under the Human Fertilisation and Embryology Act 2008, this specific use of IVF was not addressed by the legislative framework and regulated only by way of policy issued by the Human Fertilisation and Embryology Authority (HFEA). Following the implementation of the statutory reforms, a number of restrictive conditions are now imposed on the face of the legislation. This paper considers whether there is any justification for restricting access to IVF and pre-implantation tissue typing for the creation of “saviour siblings.” The analysis is undertaken by examining the normative factors that have guided the development of the UK regulatory approach prior to the 2008 legislative reforms. The approach adopted in relation to the “saviour sibling” issue is compared to more general HFEA policy, which has prioritized the notion of reproductive choice and determined that restrictions on access are only justified on the basis of harm considerations.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
Skin is the largest, and arguably, the most important organ of the body. It is a complex and multi-dimensional tissue, thus making it essentially impossible to fully model in vitro in conventional 2-dimensional culture systems. In view of this, rodents or pigs are utilised to study wound healing therapeutics or to investigate the biological effects of treatments on skin. However, there are many differences between the wound healing processes in rodents compared to humans (contraction vs. re-epithelialisation) and there are also ethical issues associated with animal testing for scientific research. Therefore, the development of skin equivalent (HSE) models from surgical discard human skin has become an important area of research. The studies in this thesis compare, for the first time, native human skin and the epidermogenesis process in a HSE model. The HSE was reported to be a comparable model for human skin in terms of expression and localisation of key epidermal cell markers. This validated HSE model was utilised to study the potential wound healing therapeutic, hyperbaric oxygen (HBO) therapy. There is a significant body of evidence suggesting that lack of cutaneous oxygen results in and potentiates the chronic, non-healing wound environment. Although the evidence is anecdotal, HBO therapy has displayed positive effects on re-oxygenation of chronic wounds and the clinical outcomes suggest that HBO treatment may be beneficial. Therefore, the HSE was subjected to a daily clinical HBO regime and assessed in terms of keratinocyte migration, proliferation, differentiation and epidermal thickening. HBO treatment was observed to increase epidermal thickness, in particular stratum corneum thickening, but it did not alter the expression or localisation of standard epidermal cell markers. In order to elucidate the mechanistic changes occurring in response to HBO treatment in the HSE model, gene microarrays were performed, followed by qRT-PCR of select genes which were differentially regulated in response to HBO treatment. The biological diversity of the HSEs created from individual skin donors, however, overrode the differences in gene expression between treatment groups. Network analysis of functional changes in the HSE model revealed general trends consistent with normal skin growth and maturation. As a more robust and longer term study of these molecular changes, protein localisation and expression was investigated in sections from the HSEs undergoing epidermogenesis in response to HBO treatment. These proteins were CDCP1, Metallothionein, Kallikrein (KLK) 1 and KLK7 and early growth response 1. While the protein expression within the HSE models exposed to HBO treatment were not consistent in all HSEs derived from all skin donors, this is the first study to detect and compare both KLK1 and CDCP1 protein expression in both a HSE model and native human skin. Furthermore, this is the first study to provide such an in depth analysis of the effect of HBO treatment on a HSE model. The data presented in this thesis, demonstrates high levels of variation between individuals and their response to HBO treatment, consistent with the clinical variation that is currently observed.
Resumo:
The opening of the Australian economy in a globalised world has led to Australian garment and retail corporations moving their manufacturing overseas and acquiring goods from overseas providers. This is usually better for the corporations’ bottom-line, as they can purchase goods overseas at a fraction of their local cost, partly due to cheap labour. Australia is one of the many OECD countries not to have a well regulated environment for workplace human rights. This study examines 18 major Australian retail and garment manufacturing corporations and finds that workplace human rights reporting is poor, based on content analysis of their annual reports, corporate social responsibility reports and websites. This is probably due to the failure of the Australian Government to provide adequate oversight by promulgating mandatory reporting standards for both local and overseas operations of Australian companies. This permits corporations to avoid reporting their workplace human rights standards and breaches.
Resumo:
Current forensic practice in age estimation relies on the application of morphological standards as a means to characterize complex threedimensional skeletal surfaces. Research in our laboratory has demonstrated that the application of the morphologically based Suchey-Brooks method to a contemporary Queensland, Australian population demonstrated significant inaccuracy in age-estimation. Consequently, this study presents preliminary results to quantify age-related skeletal changes of the pubic symphysis in Queensland individuals using novel geometric and micro-architectural protocols that have the potential of improving age estimation in the forensic context. Computed tomography scans of the right and left pubis were obtained from Caucasian individuals aged 15–70 years (n=195) from the Queensland Health Forensic and Scientific Services. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface, and micro-architectural assessment of cortical and trabecular bone structure were conducted in Rapidform XOS and Osteomeasure, respectively. Morphometric analysis demonstrated increases in maximum height and width of the surface with age independent of gender, with most significant (P<0.05) changes between the 25–34 and 55–64 year subsets. Sexual dimorphism and bilateral asymmetry were prominent features in the Queensland population. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal aspects of the symphysis. The ability to quantitatively model age-related changes to the pubic symphysis provides potential for future methodological refinement, where rigor and robust geometric assessment of the surface may remove the subjectivity associated with aging the pubic symphysis.
Resumo:
Interferon gamma (IFNγ) is a key Th1 cytokine, with a principal role in the immune response against intracellular organisms such as Chlamydia. Along with being responsible for significant morbidity in human populations, Chlamydia is also responsible for wide spread infection and disease in many animal hosts, with reports that many Australian koala subpopulations are endemically infected. An understanding of the role played by IFNγ in koala chlamydial diseases is important for the establishment of better prophylactic and therapeutic approaches against chlamydial infection in this host. A limited number of IFNγ sequences have been published from marsupials and no immune reagents to measure expression have been developed. Through preliminary analysis of the koala transcriptome, we have identified the full coding sequence of the koala IFNγ gene. Transcripts were identified in spleen and lymph node tissue samples. Phylogenetic analysis demonstrated that koala IFNγ is closely related to other marsupial IFNγ sequences and more distantly related to eutherian mammals. To begin to characterise the role of this important cytokine in the koala's response to chlamydial infection, we developed a quantitative real time PCR assay and applied it to a small cohort of koalas with and without active chlamydial disease, revealing significant differences in expression patterns between the groups. Description of the IFNγ sequence from the koala will not only assist in understanding this species' response to its most important pathogen but will also provide further insight into the evolution of the marsupial immune system
Resumo:
Advances in Information and Communication Technologies have the potential to improve many facets of modern healthcare service delivery. The implementation of electronic health records systems is a critical part of an eHealth system. Despite the potential gains, there are several obstacles that limit the wider development of electronic health record systems. Among these are the perceived threats to the security and privacy of patients’ health data, and a widely held belief that these cannot be adequately addressed. We hypothesise that the major concerns regarding eHealth security and privacy cannot be overcome through the implementation of technology alone. Human dimensions must be considered when analysing the provision of the three fundamental information security goals: confidentiality, integrity and availability. A sociotechnical analysis to establish the information security and privacy requirements when designing and developing a given eHealth system is important and timely. A framework that accommodates consideration of the legislative requirements and human perspectives in addition to the technological measures is useful in developing a measurable and accountable eHealth system. Successful implementation of this approach would enable the possibilities, practicalities and sustainabilities of proposed eHealth systems to be realised.
Resumo:
Migraine is a common neurological disease with a complex genetic aetiology. The disease affects ~12% of the Caucasian population and females are three times more likely than males to be diagnosed. In an effort to identify loci involved in migraine susceptibility, we performed a pedigree-based genome-wide association study of the isolated population of Norfolk Island, which has a high prevalence of migraine. This unique population originates from a small number of British and Polynesian founders who are descendents of the Bounty mutiny and forms a very large multigenerational pedigree (Bellis et al.; Human Genetics, 124(5):543-5542, 2008). These population genetic features may facilitate disease gene mapping strategies (Peltonen et al.; Nat Rev Genet, 1(3):182-90, 2000. In this study, we identified a high heritability of migraine in the Norfolk Island population (h (2) = 0.53, P = 0.016). We performed a pedigree-based GWAS and utilised a statistical and pathological prioritisation approach to implicate a number of variants in migraine. An SNP located in the zinc finger protein 555 (ZNF555) gene (rs4807347) showed evidence of statistical association in our Norfolk Island pedigree (P = 9.6 × 10(-6)) as well as replication in a large independent and unrelated cohort with >500 migraineurs. In addition, we utilised a biological prioritisation to implicate four SNPs, in within the ADARB2 gene, two SNPs within the GRM7 gene and a single SNP in close proximity to a HTR7 gene. Association of SNPs within these neurotransmitter-related genes suggests a disrupted serotoninergic system that is perhaps specific to the Norfolk Island pedigree, but that might provide clues to understanding migraine more generally.
Resumo:
The goal of improving systemic treatment of breast cancers is to evolve from treating every patient with non-specific cytotoxic chemotherapy/hormonal therapy, to a more individually-tailored direct treatment. Although anatomic staging and histological grade are important prognostic factors, they often fail to predict the clinical course of this disease. This study aimed to develop a gene expression profile associated with breast cancers of differing grades. We extracted mRNA from FFPE archival breast IDC tissue samples (Grades I–III), including benign tumours. Affymetrix GeneChip� Human Genome U133 Plus 2.0 Arrays were used to determine gene expression profiles and validated by Q-PCR. IHC was used to detect the AXIN2 protein in all tissues. From the array data, an independent group t-test revealed that 178 genes were significantly (P B 0.01) differentially expressed between three grades of malignant breast tumours when compared to benign tissues. From these results, eight genes were significantly differentially expressed in more than one comparison group and are involved in processes implicated in breast cancer development and/or progression. The two most implicated candidates genes were CLD10 and ESPTI1 as their gene expression profile from the microarray analysis was replicated in Q-PCR analyses of the original tumour samples as well as in an extended population. The IHC revealed a significant association between AXIN2 protein expression and ER status. It is readily acknowledged and established that significant differences exist in gene expression between different cancer grades. Expansion of this approach may lead to an improved ability to discriminate between cancer grade and other pathological factors.