488 resultados para dynamic loading device


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose Although plantar fascial thickening is a sonographic criterion for the diagnosis of plantar fasciitis, the effect of local loading and structural factors on fascial morphology are unknown. The purposes of this study were to compare sonographic measures of fascial thickness and radiographic measures of arch shape and regional loading of the foot during gait in individuals with and without unilateral plantar fasciitis and to investigate potential relationships between these loading and structural factors and the morphology of the plantar fascia in individuals with and without heel pain. Subjects The participants were 10 subjects with unilateral plantar fasciitis and 10 matched asymptomatic controls. Methods Heel pain on weight bearing was measured by a visual analog scale. Fascial thickness and static arch angle were determined from bilateral sagittal sonograms and weight-bearing lateral foot roentgenograms. Regional plantar loading was estimated from a pressure plate. Results On average, the plantar fascia of the symptomatic limb was thicker than the plantar fascia of the asymptomatic limb (6.1±1.4 mm versus 4.2±0.5 mm), which, in turn, was thicker than the fascia of the matched control limbs (3.4±0.5 mm and 3.5±0.6 mm). Pain was correlated with fascial thickness, arch angle, and midfoot loading in the symptomatic foot. Fascial thickness, in turn, was positively correlated with arch angle in symptomatic and asymptomatic feet and with peak regional loading of the midfoot in the symptomatic limb. Discussion and Conclusion The findings indicate that fascial thickness and pain in plantar fasciitis are associated with the regional loading and static shape of the arch.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Columns are one of the key load bearing elements that are highly susceptible to vehicle impacts. The resulting severe damages to columns may leads to failures of the supporting structure that are catastrophic in nature. However, the columns in existing structures are seldom designed for impact due to inadequacies of design guidelines. The impact behaviour of columns designed for gravity loads and actions other than impact is, therefore, of an interest. A comprehensive investigation is conducted on reinforced concrete column with a particular focus on investigating the vulnerability of the exposed columns and to implement mitigation techniques under low to medium velocity car and truck impacts. The investigation is based on non-linear explicit computer simulations of impacted columns followed by a comprehensive validation process. The impact is simulated using force pulses generated from full scale vehicle impact tests. A material model capable of simulating triaxial loading conditions is used in the analyses. Circular columns adequate in capacity for five to twenty story buildings, designed according to Australian standards are considered in the investigation. The crucial parameters associated with the routine column designs and the different load combinations applied at the serviceability stage on the typical columns are considered in detail. Axially loaded columns are examined at the initial stage and the investigation is extended to analyse the impact behaviour under single axis bending and biaxial bending. The impact capacity reduction under varying axial loads is also investigated. Effects of the various load combinations are quantified and residual capacity of the impacted columns based on the status of the damage and mitigation techniques are also presented. In addition, the contribution of the individual parameter to the failure load is scrutinized and analytical equations are developed to identify the critical impulses in terms of the geometrical and material properties of the impacted column. In particular, an innovative technique was developed and introduced to improve the accuracy of the equations where the other techniques are failed due to the shape of the error distribution. Above all, the equations can be used to quantify the critical impulse for three consecutive points (load combinations) located on the interaction diagram for one particular column. Consequently, linear interpolation can be used to quantify the critical impulse for the loading points that are located in-between on the interaction diagram. Having provided a known force and impulse pair for an average impact duration, this method can be extended to assess the vulnerability of columns for a general vehicle population based on an analytical method that can be used to quantify the critical peak forces under different impact durations. Therefore the contribution of this research is not only limited to produce simplified yet rational design guidelines and equations, but also provides a comprehensive solution to quantify the impact capacity while delivering new insight to the scientific community for dealing with impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human facial expression is a complex process characterized of dynamic, subtle and regional emotional features. State-of-the-art approaches on facial expression recognition (FER) have not fully utilized this kind of features to improve the recognition performance. This paper proposes an approach to overcome this limitation using patch-based ‘salient’ Gabor features. A set of 3D patches are extracted to represent the subtle and regional features, and then inputted into patch matching operations for capturing the dynamic features. Experimental results show a significant performance improvement of the proposed approach due to the use of the dynamic features. Performance comparison with pervious work also confirms that the proposed approach achieves the highest CRR reported to date on the JAFFE database and a top-level performance on the Cohn-Kanade (CK) database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microgrid may be supplied from inertial (rotating type) and non-inertial (converter-interfaced) distributed generators (DGs). However the dynamic response of these two types of DGs is different. Inertial DGs have a slower response due to their governor characteristics while non inertial DGs have the ability to respond very quickly. The focus of this paper is to propose better controls using droop characteristics to improve the dynamic interaction between different DG types in an autonomous microgrid. The transient behavior of DGs in the microgrid is investigated during the DG synchronization and load changes. Power sharing strategies based on frequency and voltage droop are considered for DGs. Droop control strategies are proposed for DGs to improve the smooth synchronization and dynamic power sharing minimizing transient oscillations in the microgrid. Simulation studies are carried out on PSCAD for validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed use typologies and pedestrian networks are two strategies commonly applied in design of the contemporary city. These approaches, aimed towards the creation of a more sustainalble urban environment, have their roots in the traditional, pre-industrial towns; they characterize urban form, articulating the tension between privaate and public realms through a series of typological variations as well as stimulating commercial activity in the city centre. Arcades, loggias and verandas are just some of the elements which can mediate this tension. Historically they have defined physical and social spaces with particular character; in the contemporary city these features are applied to deform the urban form and create a porous, dynamic morphology. This paper, comparing case studies from Italy, Japan and Australia, investigates how the design of the transition zone can define hybrid pedestrian networks, where a clear distinction between the public and private realms is no longer applicable. Pedestrians use the city in a dynamic way, combining trajectories on the public street with ones on the fringe or inside of the private built environment. In some cases, cities offer different pedestrian network possibilities at different times, as the commercial precints are subject to variations in accessibility across various timeframes. These walkable systems have an impact on the urban form and identity of places, redefining typologies and requiring an in depth analysis through plan, section and elevation diagrams.

Relevância:

20.00% 20.00%

Publicador: