184 resultados para core set


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is motivated by a lung cancer study where a regression model is involved and the response variable is too expensive to measure but the predictor variable can be measured easily with relatively negligible cost. This situation occurs quite often in medical studies, quantitative genetics, and ecological and environmental studies. In this article, by using the idea of ranked-set sampling (RSS), we develop sampling strategies that can reduce cost and increase efficiency of the regression analysis for the above-mentioned situation. The developed method is applied retrospectively to a lung cancer study. In the lung cancer study, the interest is to investigate the association between smoking status and three biomarkers: polyphenol DNA adducts, micronuclei, and sister chromatic exchanges. Optimal sampling schemes with different optimality criteria such as A-, D-, and integrated mean square error (IMSE)-optimality are considered in the application. With set size 10 in RSS, the improvement of the optimal schemes over simple random sampling (SRS) is great. For instance, by using the optimal scheme with IMSE-optimality, the IMSEs of the estimated regression functions for the three biomarkers are reduced to about half of those incurred by using SRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single electron transfer-nitroxide radical coupling (SET-NRC) reaction has been used to produce multiblock polymers with high molecular weights in under 3 min at 50◦C by coupling a difunctional telechelic polystyrene (Br-PSTY-Br)with a dinitroxide. The well known combination of dimethyl sulfoxide as solvent and Me6TREN as ligand facilitated the in situ disproportionation of CuIBr to the highly active nascent Cu0 species. This SET reaction allowed polymeric radicals to be rapidly formed from their corresponding halide end-groups. Trapping of these carbon-centred radicals at close to diffusion controlled rates by dinitroxides resulted in high-molecular-weight multiblock polymers. Our results showed that the disproportionation of CuI was critical in obtaining these ultrafast reactions, and confirmed that activation was primarily through Cu0. We took advantage of the reversibility of the NRC reaction at elevated temperatures to decouple the multiblock back to the original PSTY building block through capping the chain-ends with mono-functional nitroxides. These alkoxyamine end-groups were further exchanged with an alkyne mono-functional nitroxide (TEMPO–≡) and ‘clicked’ by a CuI-catalyzed azide/alkyne cycloaddition (CuAAC) reaction with N3–PSTY–N3 to reform the multiblocks. This final ‘click’ reaction, even after the consecutive decoupling and nitroxide-exchange reactions, still produced high molecular-weight multiblocks efficiently. These SET-NRC reactions would have ideal applications in re-usable plastics and possibly as self-healing materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose This study evaluated the impact of patient set-up errors on the probability of pulmonary and cardiac complications in the irradiation of left-sided breast cancer. Methods and Materials Using the CMS XiO Version 4.6 (CMS Inc., St Louis, MO) radiotherapy planning system's NTCP algorithm and the Lyman -Kutcher-Burman (LKB) model, we calculated the DVH indices for the ipsilateral lung and heart and the resultant normal tissue complication probabilities (NTCP) for radiation-induced pneumonitis and excess cardiac mortality in 12 left-sided breast cancer patients. Results Isocenter shifts in the posterior direction had the greatest effect on the lung V20, heart V25, mean and maximum doses to the lung and the heart. Dose volume histograms (DVH) results show that the ipsilateral lung V20 tolerance was exceeded in 58% of the patients after 1cm posterior shifts. Similarly, the heart V25 tolerance was exceeded after 1cm antero-posterior and left-right isocentric shifts in 70% of the patients. The baseline NTCPs for radiation-induced pneumonitis ranged from 0.73% - 3.4% with a mean value of 1.7%. The maximum reported NTCP for radiation-induced pneumonitis was 5.8% (mean 2.6%) after 1cm posterior isocentric shift. The NTCP for excess cardiac mortality were 0 % in 100% of the patients (n=12) before and after setup error simulations. Conclusions Set-up errors in left sided breast cancer patients have a statistically significant impact on the Lung NTCPs and DVH indices. However, with a central lung distance of 3cm or less (CLD <3cm), and a maximum heart distance of 1.5cm or less (MHD<1.5cm), the treatment plans could tolerate set-up errors of up to 1cm without any change in the NTCP to the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolating, purifying, and identifying proteins in complex biological matrices is often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesised, characterised, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 minutes. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles’ surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 minute sample measurement time.