259 resultados para cameras and camera accessories


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Average speed enforcement is a relatively new approach gaining popularity throughout Europe and Australia. This paper reviews the evidence regarding the impact of this approach on vehicle speeds, crashes rates and a number of additional road safety and public health outcomes. The economic and practical viability of the approach as a road safety countermeasure is also explored. A literature review, with an international scope, of both published and grey literature was conducted. There is a growing body of evidence to suggest a number of road safety benefits associated with average speed enforcement, including high rates of compliance with speed limits, reductions in average and 85th percentile speeds and reduced speed variability between vehicles. Moreover, the approach has been demonstrated to be particularly effective in reducing excessive speeding behaviour. Reductions in crash rates have also been reported in association with average speed enforcement, particularly in relation to fatal and serious injury crashes. In addition, the approach has been shown to improve traffic flow, reduce vehicle emissions and has also been associated with high levels of public acceptance. Average speed enforcement offers a greater network-wide approach to managing speeds that reduces the impact of time and distance halo effects associated with other automated speed enforcement approaches. Although comparatively expensive it represents a highly reliable approach to speed enforcement that produces considerable returns on investment through reduced social and economic costs associated with crashes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the problem of reconstructing the motion of a 3D articulated tree from 2D point correspondences subject to some temporal prior. Hitherto, smooth motion has been encouraged using a trajectory basis, yielding a hard combinatorial problem with time complexity growing exponentially in the number of frames. Branch and bound strategies have previously attempted to curb this complexity whilst maintaining global optimality. However, they provide no guarantee of being more efficient than exhaustive search. Inspired by recent work which reconstructs general trajectories using compact high-pass filters, we develop a dynamic programming approach which scales linearly in the number of frames, leveraging the intrinsically local nature of filter interactions. Extension to affine projection enables reconstruction without estimating cameras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine Valley, and the Surat Basin, a large sedimentary basin of confined artesian aquifers. This latter example required more detail in the hydrostratigraphy, correlation of formations with drillholes and visualisation of simulation piezometric surfaces. Both alluvial system GVS models were developed during drought conditions to support government strategies to implement groundwater management. The Surat Basin model was industry sponsored research, for coal seam gas groundwater management and community information and consultation. The “virtual” groundwater systems in these 3D GVS models can be interactively interrogated by standard functions, plus production of 2D cross-sections, data selection from the 3D scene, rear end database and plot displays. A unique feature is that GVS allows investigation of time-series data across different display modes, both 2D and 3D. GVS has been used successfully as a tool to enhance community/stakeholder understanding and knowledge of groundwater systems and is of value for training and educational purposes. Projects completed confirm that GVS provides a powerful support to management and decision making, and as a tool for interpretation of groundwater system hydrological processes. A highly effective visualisation output is the production of short videos (e.g. 2–5 min) based on sequences of camera ‘fly-throughs’ and screen images. Further work involves developing support for multi-screen displays and touch-screen technologies, distributed rendering, gestural interaction systems. To highlight the visualisation and animation capability of the GVS software, links to related multimedia hosted online sites are included in the references.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision-based SLAM is mostly a solved problem providing clear, sharp images can be obtained. However, in outdoor environments a number of factors such as rough terrain, high speeds and hardware limitations can result in these conditions not being met. High speed transit on rough terrain can lead to image blur and under/over exposure, problems that cannot easily be dealt with using low cost hardware. Furthermore, recently there has been a growth in interest in lifelong autonomy for robots, which brings with it the challenge in outdoor environments of dealing with a moving sun and lack of constant artificial lighting. In this paper, we present a lightweight approach to visual localization and visual odometry that addresses the challenges posed by perceptual change and low cost cameras. The approach combines low resolution imagery with the SLAM algorithm, RatSLAM. We test the system using a cheap consumer camera mounted on a small vehicle in a mixed urban and vegetated environment, at times ranging from dawn to dusk and in conditions ranging from sunny weather to rain. We first show that the system is able to provide reliable mapping and recall over the course of the day and incrementally incorporate new visual scenes from different times into an existing map. We then restrict the system to only learning visual scenes at one time of day, and show that the system is still able to localize and map at other times of day. The results demonstrate the viability of the approach in situations where image quality is poor and environmental or hardware factors preclude the use of visual features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To examine the relationship between hip abductor muscle (HABD) strength and the magnitude of pelvic drop (MPD) for patients with non-specific low back pain (NSLBP) and controls (CON) prior to and following a 3-week HABD strengthening protocol. At baseline, we hypothesized that NSLBP patients would exhibit reduced HABD strength and greater MPD compared to CON. Following the protocol, we hypothesized that strength would increase and MPD would decrease. Relevance: The Trendelenburg test (TT) is a common clinical test used to examine the ability of the HABD to maintain horizontal pelvic position during single limb stance. However, no study has specifically tested this theory. Moreover, no study has investigated the relationship between HABD strength and pelvic motion during walking or tested whether increased HABD strength would reduce the MPD. Methods: Quasi-experimental with 3-week exercise intervention. Fifteen NSLBP patients (32.5yrs,range 21-51yrs; VAS baseline: 5.3cm) and 10 CON (29.5yrs,range 22-47yrs) were recruited. Isometric HABD strength was measured using a force dynamometer and the average of three maximal voluntary contractions were normalized to body mass (N/kg). Two-dimensional MPD (degrees) was measured using a 60 Hz camera and was derived from two retroreflective-markers placed on the posterior superior iliac spines. MPD was measured while performing the static TT and while walking and averaged over 10 consecutive footfalls. NSLBP patients completed a 3-week HABD strengthening protocol consisting of 2 open-kinetic-chain exercises then all measures were repeated. Non-parametric analysis was used for group comparisons and correlation analysis. Results: At baseline, the NSLBP patients demonstrated 31% reduced HABD strength (mean=6.6 N/kg) compared to CON (mean=9.5 N/kg: p=0.03) and no significant differences in maximal pelvic frontal plane excursion while walking (NSLBP:mean=8.1°, CON:mean=7.1°: p=0.72). No significant correlations were measured between left HABD strength and right MPD (r=-0.37, p=0.11), or between right HABD strength and left MPD (r=-0.04, p=0.84) while performing the static TT. Following the 3-week strengthening protocol, NSLBP patients demonstrated a 12% improvement in strength (Post:mean=7.4 N/kg: p=0.02), a reduction in pain (VAS followup: 2.8cm), but no significant decreases in MPD while walking (p=0.92). Conclusions: NSLBP patients demonstrated reduced HABD strength at baseline and were able to increase strength and reduce pain in a 3-week period. However, despite increases in HABD strength, the NSLBP group exhibited similar MPD motion during the static TT and while walking compared to baseline and controls. Implications: The results suggest that the HABD alone may not be primarily responsible for controlling a horizontal pelvic position during static and dynamic conditions. Increasing the strength of the hip abductors resulted in a reduction of pain in NSLBP patients providing evidence for further research to identify specific musculature responsible for controlling pelvic motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. Our method achieves minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing- only visual servoing approach. We provide theoretical problem formulation, as well as results from real flights using small quadrotors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stereo-based visual odometry algorithms are heavily dependent on an accurate calibration of the rigidly fixed stereo pair. Even small shifts in the rigid transform between the cameras can impact on feature matching and 3D scene triangulation, adversely affecting pose estimates and applications dependent on long-term autonomy. In many field-based scenarios where vibration, knocks and pressure change affect a robotic vehicle, maintaining an accurate stereo calibration cannot be guaranteed over long periods. This paper presents a novel method of recalibrating overlapping stereo camera rigs from online visual data while simultaneously providing an up-to-date and up-to-scale pose estimate. The proposed technique implements a novel form of partitioned bundle adjustment that explicitly includes the homogeneous transform between a stereo camera pair to generate an optimal calibration. Pose estimates are computed in parallel to the calibration, providing online recalibration which seamlessly integrates into a stereo visual odometry framework. We present results demonstrating accurate performance of the algorithm on both simulated scenarios and real data gathered from a wide-baseline stereo pair on a ground vehicle traversing urban roads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in mobile telephone technology and available dermoscopic attachments for mobile telephones have created a unique opportunity for consumer-initiated mobile teledermoscopy. At least 2 companies market a dermoscope attachment for an iPhone (Apple), forming a mobile teledermoscope. These devices and the corresponding software applications (apps) enable (1) lesion magnification (at least ×20) and visualization with polarized light; (2) photographic documentation using the telephone camera; (3) lesion measurement (ruler); (4) adding of image and lesion details; and (5) e-mail data to a teledermatologist for review. For lesion assessment, the asymmetry-color (AC) rule has 94% sensitivity and 62 specificity for melanoma identification by consumers [1]. Thus, consumers can be educated to recognize asymmetry and color patterns in suspect lesions. However, we know little about consumers' use of mobile teledermoscopy for lesion assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a method to generate a large scale and accurate dense 3D semantic map of street scenes. A dense 3D semantic model of the environment can significantly improve a number of robotic applications such as autonomous driving, navigation or localisation. Instead of using offline trained classifiers for semantic segmentation, our approach employs a data-driven, nonparametric method to parse scenes which easily scale to a large environment and generalise to different scenes. We use stereo image pairs collected from cameras mounted on a moving car to produce dense depth maps which are combined into a global 3D reconstruction using camera poses from stereo visual odometry. Simultaneously, 2D automatic semantic segmentation using a nonparametric scene parsing method is fused into the 3D model. Furthermore, the resultant 3D semantic model is improved with the consideration of moving objects in the scene. We demonstrate our method on the publicly available KITTI dataset and evaluate the performance against manually generated ground truth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents practical vision-based collision avoidance for objects approximating a single point feature. Using a spherical camera model, a visual predictive control scheme guides the aircraft around the object along a conical spiral trajectory. Visibility, state and control constraints are considered explicitly in the controller design by combining image and vehicle dynamics in the process model, and solving the nonlinear optimization problem over the resulting state space. Importantly, range is not required. Instead, the principles of conical spiral motion are used to design an objective function that simultaneously guides the aircraft along the avoidance trajectory, whilst providing an indication of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing a potential solution to the See and Avoid problem for unmanned aircraft and is demonstrated through a series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of shopping malls in Europe, the UK and Australia over the last thirty years or so, raises questions about the disruptive effects of such capital intensive developments on local area shopping facilities, transport and other infrastructures and the maintenance of artificially high prices for goods, whereby the promised greater choice of shops and prices is rarely a genuine free market of competition leading to lower prices. A central question to be addressed is whom these centres represent and belong to. While many claim to exist to ‘serve the community’ almost all malls and centres are private property and the community of shoppers has few, if any rights compared with the conventional high street, which is a public thoroughfare. This permits the management of the centres through their own private security staff, to observe, follow, eject and refuse further admission to anyone considered to be ‘undesirable’. What is different about the newest shopping centres is the routine use of increasingly sophisticated CCTV surveillance equipment to observe and record, for later evidential and entry restriction use, the movements of centre visitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After first observing a person, the task of person re-identification involves recognising an individual at different locations across a network of cameras at a later time. Traditionally, this task has been performed by first extracting appearance features of an individual and then matching these features to the previous observation. However, identifying an individual based solely on appearance can be ambiguous, particularly when people wear similar clothing (i.e. people dressed in uniforms in sporting and school settings). This task is made more difficult when the resolution of the input image is small as is typically the case in multi-camera networks. To circumvent these issues, we need to use other contextual cues. In this paper, we use "group" information as our contextual feature to aid in the re-identification of a person, which is heavily motivated by the fact that people generally move together as a collective group. To encode group context, we learn a linear mapping function to assign each person to a "role" or position within the group structure. We then combine the appearance and group context cues using a weighted summation. We demonstrate how this improves performance of person re-identification in a sports environment over appearance based-features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near work may play an important role in the development of myopia in the younger population. The prevalence of myopia has also been found to be higher in occupations that involve substantial near work tasks, for example in microscopists and textile workers. When nearwork is performed, it typically involves accommodation, convergence and downward gaze. A number of previous studies have examined the effects of accommodation and convergence on changes in the optics and biometrics of the eye in primary gaze. However, little is known about the influence of accommodation on the eye in downward gaze. This thesis is primarily concerned with investigating the changes in the eye during near work in downward gaze under natural viewing conditions. To measure wavefront aberrations in downward gaze under natural viewing conditions, we modified a commercial Shack-Hartmann wavefront sensor by adding a relay lens system to allow on-axis ocular aberration measurements in primary gaze and downward gaze, with binocular fixation. Measurements with the modified wavefront sensor in primary and downward gaze were validated against a conventional aberrometer using both a model eye and in 9 human subjects. We then conducted an experiment to investigate changes in ocular aberrations associated with accommodation in downward gaze over 10 mins in groups of both myopes (n = 14) and emmetropes (n =12) using the modified Shack-Hartmann wavefront sensor. During the distance accommodation task, small but significant changes in refractive power (myopic shift) and higher order aberrations were observed in downward gaze compared to primary gaze. Accommodation caused greater changes in higher order aberrations (in particular coma and spherical aberration) in downward gaze than primary gaze, and there was evidence that the changes in certain aberrations with accommodation over time were different in downward gaze compared to primary gaze. There were no obvious systematic differences in higher order aberrations between refractive error groups during accommodation or downward gaze for fixed pupils. However, myopes exhibited a significantly greater change in higher order aberrations (in particular spherical aberration) than emmetropes for natural pupils after 10 mins of a near task (5 D accommodation) in downward gaze. These findings indicated that ocular aberrations change from primary to downward gaze, particularly with accommodation. To understand the mechanism underlying these changes in greater detail, we then extended this work to examine the characteristics of the corneal optics, internal optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 mins. Twenty young adult subjects (10 emmetropes and 10 myopes) participated in this study. To measure corneal topography and ocular biometrics in downward gaze, a rotating Scheimpflug camera and an optical biometer were inclined on a custom built, height and tilt adjustable table. We found that both corneal optics and internal optics change with downward gaze, resulting in a myopic shift (~0.10 D) in the spherical power of the eye. The changes in corneal optics appear to be due to eyelid pressure on the anterior surface of the cornea, whereas the changes in the internal optics (an increase in axial length and a decrease in anterior chamber depth) may be associated with movement of the crystalline lens, under the action of gravity, and the influence of altered biomechanical forces from the extraocular muscles on the globe with downward gaze. Changes in axial length with accommodation were significantly greater in downward gaze than primary gaze (p < 0.05), indicating an increased effect of the mechanical forces from the ciliary muscle and extraocular muscles. A subsequent study was conducted to investigate the changes in anterior biometrics, axial length and choroidal thickness in nine cardinal gaze directions under the actions of the extraocular muscles. Ocular biometry measurements were obtained from 30 young adults (10 emmetropes, 10 low myopes and 10 moderate myopes) through a rotating prism with 15° deviation, along the foveal axis, using a non-contact optical biometer in each of nine different cardinal directions of gaze, over 5 mins. There was a significant influence of gaze angle and time on axial length (both p < 0.001), with the greatest axial elongation (+18 ± 8 μm) occurring with infero-nasal gaze (p < 0.001) and a slight decrease in axial length in superior gaze (−12 ± 17 μm) compared with primary gaze (p < 0.001). There was a significant correlation between refractive error (spherical equivalent refraction) and the mean change in axial length in the infero-nasal gaze direction (Pearson's R2 = 0.71, p < 0.001). To further investigate the relative effect of gravity and extraocular muscle force on the axial length, we measured axial length in 15° and 25° downward gaze with the biometer inclined on a tilting table that allowed gaze shifts to occur with either full head turn but no eye turn (reflects the effect of gravity), or full eye turn with no head turn (reflects the effect of extraocular muscle forces). We observed a significant axial elongation in 15° and 25° downward gaze in the full eye turn condition. However, axial length did not change significantly in downward gaze over 5 mins (p > 0.05) in the full head turn condition. The elongation of the axial length in downward gaze appears to be due to the influence of the extraocular muscles, since the effect was not present when head turn was used instead of eye turn. The findings of these experiments collectively show the dynamic characteristics of the optics and biometrics of the eye in downward gaze during a near task, over time. These were small but significant differences between myopic and emmetropic eyes in both the optical and biomechanical changes associated with shifts of gaze direction. These differences between myopes and emmetropes could arise as a consequence of excessive eye growth associated with myopia. However the potentially additive effects of repeated or long lasting near work activities employing infero-nasal gaze could also act to promote elongation of the eye due to optical and/or biomechanical stimuli.