384 resultados para based on (NM2) – (SOR1NM2)
Resumo:
We study discrimination based on the hukou system that segregates citizens in groups of migrants and locals in urban China. We use an artefactual field experiment with a labor market framing. We recruit workers on their real labor market as experimental participants and investigate if official discrimination motivates individual discrimination based on hukou status. In our experimental results we observe discrimination based on the hukou characteristic: however, statistical discrimination does not seem to be the source of this, as status is exogeneous for our participants and migrants and locals behave similarly. Furthermore, discrimination increases between two experimental frameworks when motives for statistical discrimination are removed.
Resumo:
Sequencing of mba gene fragments of reference strains of Ureaplasma urealyticum serovars 1, 3, 6, 14, in addition to 33 clinical U. urealyticum isolates is reported. A phylogenetic tree deduced from an alignment of these sequences clearly demonstrates two major clusters (confidence limit 100%), which equate to the parvo and T960 biovars, and five types which we have designated mba 1, 3, 6, 8 and X. These relationships are supported by bootstrap analysis. Polymorphisms within the mba fragment of types mba 1, 3, and 6 were used to define nine subtypes (mba 1a, 1b, 3a, 3b, 3c, 3d, 3e, 6a, and 6b) thus facilitating high resolution typing of U. urealyticum. Inclusion of the reference strains for serovars 1, 3, 6, and 8 in the mba typing scheme showed that the results of this analysis are broadly consistent with currently accepted serotyping. In addition a ure gene fragment from nine of the clinical isolates was amplified and sequenced. Comparisons of the sequences clearly distinguished the two biovars of U. urealyticum; however this fragment was invariant within the parvo biovar. This study has shown that the sequence of the mba can reveal the fine details of the relationships between U. urealyticum isolates and also supports the significant evolutionary gap between the two biovars.
Resumo:
The only effective method of Fiber Bragg Grating (FBG) strain modulation has been by changing the distance between its two fixed ends. We demonstrate an alternative being more sensitive to force based on the nonlinear amplification relationship between a transverse force applied to a stretched string and its induced axial force. It may improve the sensitivity and size of an FBG force sensor, reduce the number of FBGs needed for multi-axial force monitoring, and control the resonant frequency of an FBG accelerometer.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Vehicles are able to communicate on the local traffic state in real time, which could result in an automatic and therefore better reaction to the mechanism of traffic jam formation. An upstream single hop radio broadcast network can improve the perception of each cooperative driver within radio range and hence the traffic stability. The impact of a cooperative law on traffic congestion appearance is investigated, analytically and through simulation. Ngsim field data is used to calibrate the Optimal Velocity with Relative Velocity (OVRV) car following model and the MOBIL lane-changing model is implemented. Assuming that congestion can be triggered either by a perturbation in the instability domain or by a critical lane changing behavior, the calibrated car following behavior is used to assess the impact of a microscopic cooperative law on abnormal lane changing behavior. The cooperative law helps reduce and delay traffic congestion as it increases traffic flow stability.
Resumo:
Given the paradigm of smart grid as the promising backbone for future network, this paper uses this paradigm to propose a new coordination approach for LV network based on distributed control algorithm. This approach divides the LV network into hierarchical communities where each community is controlled by a control agent. Different level of communication has been proposed for this structure to control the network in different operation modes.
Resumo:
This paper describes a new approach to establish the probabilistic cable rating based on cable thermal environment studies. Knowledge of cable parameters has been well established. However the environment in which the cables are buried is not so well understood. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Based on the long-term continuous field data for more than 4 years, a probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. Hence, a probabilistic cable rating can be established based on monthly probabilistic distribution of thermal resistivity
Resumo:
ZnO is a wide band-gap semiconductor that has several desirable properties for optoelectronic devices. With its large exciton binding energy of ~60 meV, ZnO is a promising candidate for high stability, room-temperature luminescent and lasing devices [1]. Ultraviolet light-emitting diodes (LEDs) based on ZnO homojunctions had been reported [2,3], while preparing stable p-type ZnO is still a challenge. An alternative way is to use other p-type semiconductors, ether inorganic or organic, to form heterojunctions with the naturally n-type ZnO. The crystal structure of wurtzite ZnO can be described as Zn and O atomic layers alternately stacked along the [0001] direction. Because of the fastest growth rate over the polar (0001) facet, ZnO crystals tend to grow into one-dimensional structures, such as nanowires and nanobelts. Since the first report of ZnO nanobelts in 2001 [4], ZnO nanostructures have been particularly studied for their potential applications in nano-sized devices. Various growth methods have been developed for growing ZnO nanostructures, such as chemical vapor deposition (CVD), Metal-organic CVD (MOCVD), aqueous growth and electrodeposition [5]. Based on the successful synthesis of ZnO nanowires/nanorods, various types of hybrid light-emitting diodes (LEDs) were made. Inorganic p-type semiconductors, such as GaN, Si and SiC, have been used as substrates to grown ZnO nanorods/nanowires for making LEDs. GaN is an ideal material that matches ZnO not only in the crystal structure but also in the energy band levels. However, to prepare Mg-doped p-GaN films via epitaxial growth is still costly. In comparison, the organic semiconductors are inexpensive and have many options to select, for a large variety of p-type polymer or small-molecule semiconductors are now commercially available. The organic semiconductor has the limitation of durability and environmental stability. Many polymer semiconductors are susceptible to damage by humidity or mere exposure to oxygen in the air. Also the carrier mobilities of polymer semiconductors are generally lower than the inorganic semiconductors. However, the combination of polymer semiconductors and ZnO nanostructures opens the way for making flexible LEDs. There are few reports on the hybrid LEDs based on ZnO/polymer heterojunctions, some of them showed the characteristic UV electroluminescence (EL) of ZnO. This chapter reports recent progress of the hybrid LEDs based on ZnO nanowires and other inorganic/organic semiconductors. We provide an overview of the ZnO-nanowire-based hybrid LEDs from the perspectives of the device configuration, growth methods of ZnO nanowires and the selection of p-type semiconductors. Also the device performances and remaining issues are presented.
Resumo:
Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality data sets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares Regression and Bayesian Weighted Least Squares Regression for the estimation of uncertainty associated with pollutant build-up prediction using limited data sets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in the prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling.
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focused recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the "best" choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy.
Resumo:
Topic recommendation can help users deal with the information overload issue in micro-blogging communities. This paper proposes to use the implicit information network formed by the multiple relationships among users, topics and micro-blogs, and the temporal information of micro-blogs to find semantically and temporally relevant topics of each topic, and to profile users' time-drifting topic interests. The Content based, Nearest Neighborhood based and Matrix Factorization models are used to make personalized recommendations. The effectiveness of the proposed approaches is demonstrated in the experiments conducted on a real world dataset that collected from Twitter.com.
Resumo:
The actin microfilament plays a critical role in many cellular processes including embryonic development, wound healing, immune response, and tissue development. It is commonly organized in the form of networks whose mechanical properties change with changes in their architecture due to cell evolution processes. This paper presents a new nonlinear continuum mechanics model of single filamentous actin (F-actin) that is based on nanoscale molecular simulations. Following this continuum model of the single F-actin, mechanical properties of differently architected lamellipodia are studied. The results provide insight that can contribute to the understanding of the cell edge motions of living cells.
Resumo:
Abnormal “polymer-in-salt” conduction behavior is observed in a solid electrolyte composed of lithium iodide (LiI) and 3-hydroxypropionitrile (HPN). Based on comprehensive investigations by X-ray diffraction (XRD) and Raman and infrared spectroscopy, this abnormal conduction behavior is attributed to the formation of new ionic associates [Lim +In−]· · ·N C (m> n) and the reinforced hydrogen bonding of I· · ·HO in the electrolyte at high LiI concentrations.
Resumo:
Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.
Resumo:
Private data stored on smartphones is a precious target for malware attacks. A constantly changing environment, e.g. switching network connections, can cause unpredictable threats, and require an adaptive approach to access control. Context-based access control is using dynamic environmental information, including it into access decisions. We propose an "ecosystem-in-an-ecosystem" which acts as a secure container for trusted software aiming at enterprise scenarios where users are allowed to use private devices. We have implemented a proof-of-concept prototype for an access control framework that processes changes to low-level sensors and semantically enriches them, adapting access control policies to the current context. This allows the user or the administrator to maintain fine-grained control over resource usage by compliant applications. Hence, resources local to the trusted container remain under control of the enterprise policy. Our results show that context-based access control can be done on smartphones without major performance impact.