261 resultados para adaptive variability
Resumo:
The relationship between temperature and mortality is generally found to be bathtub shaped (rising at both extremes). However, there are limited data on the potential health effects of temperature variability and on temperature itself...
Resumo:
Consistency and invariance in movements are traditionally viewed as essential features of skill acquisition and elite sports performance. This emphasis on the stabilization of action has resulted in important processes of adaptation in movement coordination during performance being overlooked in investigations of elite sport performance. Here we investigate whether differences exist between the movement kinematics displayed by five, elite springboard divers (age 17 ± 2.4 years) in the preparation phases of baulked and completed take-offs. The two-dimensional kinematic characteristics of the reverse somersault take-off phases (approach and hurdle) were recorded during normal training sessions and used for intra-individual analysis. All participants displayed observable differences in movement patterns at key events during the approach phase; however, the presence of similar global topological characteristics suggested that, overall, participants did not perform distinctly different movement patterns during completed and baulked dives. These findings provide a powerful rationale for coaches to consider assessing functional variability or adaptability of motor behaviour as a key criterion of successful performance in sports such as diving.
Resumo:
Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.
Resumo:
Urban road dust comprises of a range of potentially toxic metal elements and plays a critical role in degrading urban receiving water quality. Hence, assessing the metal composition and concentration in urban road dust is a high priority. This study investigated the variability of metal composition and concentrations in road dust in 4 different urban land uses in Gold Coast, Australia. Samples from 16 road sites were collected and tested for selected 12 metal species. The data set was analyzed using both univariate and multivariate techniques. Outcomes of the data analysis revealed that the metal concentrations in road dust differ considerably within and between different land uses. Iron, aluminum, magnesium and zinc are the most abundant in urban land uses. It was also noted that metal species such as titanium, nickel, copper and zinc have the highest concentrations in industrial land use. The study outcomes revealed that soil and traffic related sources as key sources of metals deposited on road surfaces.
Resumo:
Real-time image analysis and classification onboard robotic marine vehicles, such as AUVs, is a key step in the realisation of adaptive mission planning for large-scale habitat mapping in previously unexplored environments. This paper describes a novel technique to train, process, and classify images collected onboard an AUV used in relatively shallow waters with poor visibility and non-uniform lighting. The approach utilises Förstner feature detectors and Laws texture energy masks for image characterisation, and a bag of words approach for feature recognition. To improve classification performance we propose a usefulness gain to learn the importance of each histogram component for each class. Experimental results illustrate the performance of the system in characterisation of a variety of marine habitats and its ability to operate onboard an AUV's main processor suitable for real-time mission planning.
Resumo:
In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on either a set of discrete or continuous models and outperforms other model discrimination approaches.
Resumo:
Multiple-time signatures are digital signature schemes where the signer is able to sign a predetermined number of messages. They are interesting cryptographic primitives because they allow to solve many important cryptographic problems, and at the same time offer substantial efficiency advantage over ordinary digital signature schemes like RSA. Multiple-time signature schemes have found numerous applications, in ordinary, on-line/off-line, forward-secure signatures, and multicast/stream authentication. We propose a multiple-time signature scheme with very efficient signing and verifying. Our construction is based on a combination of one-way functions and cover-free families, and it is secure against the adaptive chosen-message attack.
Resumo:
Used frequently in food contact materials, bisphenol A (BPA) has been studied extensively in recent years, and ubiquitous exposure in the general population has been demonstrated worldwide. Characterising within- and between-individual variability of BPA concentrations is important for characterising exposure in biomonitoring studies, and this has been investigated previously in adults, but not in children. The aim of this study was to characterise the short-term variability of BPA in spot urine samples in young children. Children aged ≥2-<4 years (n = 25) were recruited from an existing cohort in Queensland Australia, and donated four spot urine samples each over a two day period. Samples were analysed for total BPA using isotope dilution online solid phase extraction-liquid chromatography-tandem mass spectrometry, and concentrations ranged from 0.53–74.5 ng/ml, with geometric mean and standard deviation of 2.70 ng/ml and 2.94 ng/ml, respectively. Sex and time of sample collection were not significant predictors of BPA concentration. The between-individual variability was approximately equal to the within-individual variability (ICC = 0.51), and this ICC is somewhat higher than previously reported literature values. This may be the result of physiological or behavioural differences between children and adults or of the relatively short exposure window assessed. Using a bootstrapping methodology, a single sample resulted in correct tertile classification approximately 70% of the time. This study suggests that single spot samples obtained from young children provide a reliable characterization of absolute and relative exposure over the short time window studied, but this may not hold true over longer timeframes.
Resumo:
This paper presents the Mossman Mill District Practices Framework. It was developed in the Wet Tropics region within the Great Barrier Reef in north-eastern Australia to describe the environmental benefits of agricultural management practices for the sugar cane industry. The framework translates complex, unclear and overlapping environmental plans, policy and legal arrangements into a simple framework of management practices that landholders can use to improve their management actions. Practices range from those that are old or outdated through to aspirational practices that have the potential to achieve desired resource condition targets. The framework has been applied by stakeholders at multiple scales to better coordinate and integrate a range of policy arrangements to improve natural resource management. It has been used to structure monitoring and evaluation in order to underpin a more adaptive approach to planning at mill district and property scale. Potentially, the framework and approach can be applied across fields of planning where adaptive management is needed. It has the potential to overcome many of the criticisms of property-scale and regional Natural Resource Management.
Resumo:
Software to create individualised finite element (FE) models of the osseoligamentous spine using pre-operative computed tomography (CT) data-sets for spinal surgery patients has recently been developed. This study presents a geometric sensitivity analysis of this software to assess the effect of intra-observer variability in user-selected anatomical landmarks. User-selected landmarks on the osseous anatomy were defined from CT data-sets for three scoliosis patients and these landmarks were used to reconstruct patient-specific anatomy of the spine and ribcage using parametric descriptions. The intra-observer errors in landmark co-ordinates for these anatomical landmarks were calculated. FE models of the spine and ribcage were created using the reconstructed anatomy for each patient and these models were analysed for a loadcase simulating clinical flexibility assessment. The intra-observer error in the anatomical measurements was low in comparison to the initial dimensions, with the exception of the angular measurements for disc wedge and zygapophyseal joint (z-joint) orientation and disc height. This variability suggested that CT resolution may influence such angular measurements, particularly for small anatomical features, such as the z-joints, and may also affect disc height. The results of the FE analysis showed low variation in the model predictions for spinal curvature with the mean intra-observer variability substantially less than the accepted error in clinical measurement. These findings demonstrate that intra-observer variability in landmark point selection has minimal effect on the subsequent FE predictions for a clinical loadcase.
Resumo:
Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.
Resumo:
Public Transport Travel Time Variability (PTTV) is essential for understanding the deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes the key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyzes the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach, using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and analyzing the transit systems.
Resumo:
The Climate Change Adaptation for Natural Resource Management (NRM) in East Coast Australia Project aims to foster and support an effective “community of practice” for climate change adaptation within the East Coast Cluster NRM regions that will increase the capacity for adaptation to climate change through enhancements in knowledge and skills and through the establishment of long‐term collaborations. It is being delivered by six consortium research partners: * The University of Queensland (project lead) * Griffith University * University of the Sunshine Coast * CSIRO * New South Wales Office of Environment and Heritage * Queensland Department of Science, IT, Innovation and the Arts (Queensland Herbarium). The project relates to the East Coast Cluster, comprising the six coastal NRM regions and regional bodies between Rockhampton and Sydney: * Fitzroy Basin Association (FBA) * Burnett‐Mary Regional Group (BMRG) * SEQ Catchments (SEQC) * Northern Rivers Catchment Management Authority (CMA) (NRCMA) * Hunter‐Central Rivers CMA (HCRCMA) * Hawkesbury Nepean CMA (HNCMA). The aims of this report are to summarise the needs of the regional bodies in relation to NRM planning for climate change adaptation, and provide a basis for developing the detailed work plan for the research consortium. Two primary methods were used to identify the needs of the regional bodies: (1) document analysis of the existing NRM/ Catchment Action Plans (CAPs) and applications by the regional bodies for funding under Stream 1 of the Regional NRM Planning for Climate Change Fund, and; (2) a needs analysis workshop, held in May 2013 involving representatives from the research consortium partners and the regional bodies. The East Coast Cluster includes five of the ten largest significant urban areas in Australia, world heritage listed natural environments, significant agriculture, mining and extensive grazing. The three NSW CMAs have recently completed strategic level CAPs, with implementation plans to be finalised in 2014/2015. SEQC and FBA are beginning a review of their existing NRM Plans, to be completed in 2014 and 2015 respectively; while BMRG is aiming to produce a NRM and Climate Variability Action Strategy. The regional bodies will receive funding from the Australian Government through the Regional NRM Planning for Climate Change Fund (NRM Fund) to improve regional planning for climate change and help guide the location of carbon and biodiversity activities, including wildlife corridors. The bulk of the funding will be available for activities in 2013/2014, with smaller amounts available in subsequent years. Most regional bodies aim to have a large proportion of the planning work complete by the end of 2014. In addition, NSW CMAs are undergoing major structural change and will be incorporated into semi‐autonomous statutory Local Land Services bodies from 2014. Boundaries will align with local government boundaries and there will be significant change in staff and structures. The regional bodies in the cluster have a varying degree of climate knowledge. All plans recognise climate change as a key driver of change, but there are few specific actions or targets addressing climate change. Regional bodies also have varying capacity to analyse large volumes of spatial or modelling data. Due to the complex nature of natural resource management, all regional bodies work with key stakeholders (e.g. local government, industry groups, and community groups) to deliver NRM outcomes. Regional bodies therefore require project outputs that can be used directly in stakeholder engagement activities, and are likely to require some form of capacity building associated with each of the outputs to maximise uptake. Some of the immediate needs of the regional bodies are a summary of information or tools that are able to be used immediately; and a summary of the key outputs and milestone dates for the project, to facilitate alignment of planning activities with research outputs. A project framework is useful to show the linkages between research elements and the relevance of the research to the adaptive management cycle for NRM planning in which the regional bodies are engaged. A draft framework is proposed to stimulate and promote discussion on research elements and linkages; this will be refined during and following the development of the detailed project work plan. The regional bodies strongly emphasised the need to incorporate a shift to a systems based resilience approach to NRM planning, and that approach is included in the framework. The regional bodies identified that information on climate projections would be most useful at regional and subregional scale, to feed into scenario planning and impact analysis. Outputs should be ‘engagement ready’ and there is a need for capacity building to enable regional bodies to understand and use the projections in stakeholder engagement. There was interest in understanding the impacts of climate change projections on ecosystems (e.g. ecosystem shift), and the consequent impacts on the production of ecosystem services. It was emphasised that any modelling should be able to be used by the regional bodies with their stakeholders to allow for community input (i.e. no black box models). The online regrowth benefits tool was of great interest to the regional bodies, as spatial mapping of carbon farming opportunities would be relevant to their funding requirements. The NSW CMAs identified an interest in development of the tool for NSW vegetation types. Needs relating to socio‐economic information included understanding the socio‐economic determinants of carbon farming uptake and managing community expectations. A need was also identified to understand the vulnerability of industry groups as well as community to climate change impacts, and in particular understanding how changes in the flow of ecosystem services would interact with the vulnerability of these groups to impact on the linked ecologicalsocio‐economic system. Responses to disasters (particularly flooding and storm surge) and recovery responses were also identified as being of interest. An ecosystem services framework was highlighted as a useful approach to synthesising biophysical and socioeconomic information in the context of a systems based, resilience approach to NRM planning. A need was identified to develop processes to move towards such an approach to NRM planning from the current asset management approach. Examples of best practice in incorporating climate science into planning, using scenarios for stakeholder engagement in planning and processes for institutionalising learning were also identified as cross‐cutting needs. The over‐arching theme identified was the need for capacity building for the NRM bodies to best use the information available at any point in time. To this end a planners working group has been established to support the building of a network of informed and articulate NRM agents with knowledge of current climate science and capacity to use current tools to engage stakeholders in NRM planning for climate change adaptation. The planners working group would form the core group of the community of practice, with the broader group of stakeholders participating when activities aligned with their interests. In this way, it is anticipated that the Project will contribute to building capacity within the wider community to effectively plan for climate change adaptation.
Resumo:
Background Few data on the relationship between temperature variability and childhood pneumonia are available. This study attempted to fill this knowledge gap. Methods A quasi-Poisson generalized linear regression model combined with a distributed lag nonlinear model was used to quantify the impacts of diurnal temperature range (DTR) and temperature change between two neighbouring days (TCN) on emergency department visits (EDVs) for childhood pneumonia in Brisbane, from 2001 to 2010, after controlling for possible confounders. Results An adverse impact of TCN on EDVs for childhood pneumonia was observed, and the magnitude of this impact increased from the first five years (2001–2005) to the second five years (2006–2010). Children aged 5–14 years, female children and Indigenous children were particularly vulnerable to TCN impact. However, there was no significant association between DTR and EDVs for childhood pneumonia. Conclusions As climate change progresses, the days with unstable weather pattern are likely to increase. Parents and caregivers of children should be aware of the high risk of pneumonia posed by big TCN and take precautionary measures to protect children, especially those with a history of respiratory diseases, from climate impacts.