508 resultados para Wright, Erik Olin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Regenerative endodontics is an innovative treatment concept aiming to regenerate pulp, dentin and root structures. In the diseased or necrotic tooth, the limitation in vascular supply renders successful tissue regeneration/generation in a whole tooth challenging. The aim of this study is to evaluate the ability of vascularized tissue to develop within a pulpless tooth using tissue engineering techniques. Materials and methods A pulpless tooth chamber, filled with collagen I gel containing isolated rat dental pulp cells (DPC) and angiogenic growth factors, was placed into a hole created in the femoral cortex or into its own tooth socket, respectively. The gross, histological and biochemical characteristics of the de novo tissue were evaluated at 4 and 8weeks post-transplantation. Results Tooth revascularization and tissue generation was observed only in the femur group, confirming the important role of vascular supply in tissue regeneration. The addition of cells and growth factors significantly promoted connective tissue production in the tooth chamber. Conclusion Successful revascularization and tissue regeneration in this model demonstrate the importance of a direct vascular supply and the advantages of a stem cell approach. © 2012 John Wiley & Sons A/S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumour heterogeneity is a key characteristic of cancer and has significant implications relating to tumour response to chemotherapy as well as patient prognosis and potential relapse. It is being increasingly accepted that tumours are clonal in origin, suggestive of a tumour arising from a deregulated or mutated cell. Cancer stem cells (CSC) possess these capabilities, and with appropriate intracellular triggers and/or signalling from extracellular environments, can purportedly differentiate to initiate tumour formation. Additionally through epithelial mesenchymal plasticity (EMP), where cells gain and maintain characteristics of both epithelial and mesenchymal cell types, epithelial-derived tumour cells have been shown to de-differentiate to acquire cancer stem attributes, which also impart chemotherapy resistance. This new paradigm places EMP centrally in the process of tumour progression and metastasis, as well as modulating drug response to current forms of chemotherapy. Furthermore, EMP and CSCs have been identified in cancers arising from different tissue types making it a possible generic therapeutic target in cancer biology. Using breast cancer (BrCa) as an example, we summarise here the current understanding of CSCs, the role of EMP in cancer biology - especially in CSCs and different molecular subtypes, and the implications this has for current and future cancer treatment strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Although PPARγ antagonists have shown considerable pre-clinical efficacy, recent studies suggest PPARγ ligands induce PPARγ-independent effects. There is a need to better define such effects to permit rational utilization of these agents. Methods We have studied the effects of a range of endogenous and synthetic PPARγ ligands on proliferation, growth arrest (FACS analysis) and apoptosis (caspase-3/7 activation and DNA fragmentation) in multiple prostate carcinoma cell lines (DU145, PC-3 and LNCaP) and in a series of cell lines modelling metastatic transitional cell carcinoma of the bladder (TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2). Results 15-deoxy-prostaglandin J2 (15dPGJ2), troglitazone (TGZ) and to a lesser extent ciglitazone exhibited inhibitory effects on cell number; the selective PPARγ antagonist GW9662 did not reverse these effects. Rosiglitazone and pioglitazone had no effect on proliferation. In addition, TGZ induced G0/G1 growth arrest whilst 15dPGJ2 induced apoptosis. Conclusion Troglitazone and 15dPGJ2 inhibit growth of prostate and bladder carcinoma cell lines through different mechanisms and the effects of both agents are PPARγ-independent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. Methods PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. Results When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive of increased risk. Conclusion ST in combination with EGF directed a greater EMT via actin depolymerisation and focal contact size reduction, resulting in a loosening of cell-ECM attachment along with Snail1-Zeb1/δEF1 induction. This appeared fundamentally different to the EGF-induced EMT, highlighting the multiple pathways which can regulate EMT. Our findings add support for a functional role for Snail1 in invasive breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The behaviour of tumour cells depends on factors such as genetics and the tumour microenvironment. The latter plays a crucial role in normal mammary gland development and also in breast cancer initiation and progression. Breast cancer tissues tend to be highly desmoplastic and dense matrix as a pre-existing condition poses one of the highest risk factors for cancer development. However, matrix influence on tumour cell gene expression and behaviour such as cell migration is not fully elucidated. Results We generated high-density (HD) matrices that mimicked tumour collagen content of 20 mg/cm3 that were ~14-fold stiffer than low-density (LD) matrix of 1 mg/cm3. Live-cell imaging showed breast cancer cells utilizing cytoplasmic streaming and cell body contractility for migration within HD matrix. Cell migration was blocked in the presence of both the ROCK inhibitor, Y-27632, and the MMP inhibitor, GM6001, but not by the drugs individually. This suggests roles for ROCK1 and MMP in cell migration are complicated by compensatory mechanisms. ROCK1 expression and protein activity, were significantly upregulated in HD matrix but these were blocked by treatment with a histone deacetylase (HDAC) inhibitor, MS-275. In HD matrix, the inhibition of ROCK1 by MS-275 was indirect and relied upon protein synthesis and Notch1. Inhibition of Notch1 using pooled siRNA or DAPT abrogated the inhibition of ROCK1 by MS-275. Conclusion Increased matrix density elevates ROCK1 activity, which aids in cell migration via cell contractility. The upregulation of ROCK1 is epigenetically regulated in an indirect manner involving the repression of Notch1. This is demonstrated from inhibition of HDACs by MS-275, which caused an upregulation of Notch1 levels leading to blockade of ROCK1 expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epithelial-mesenchymal plasticity in breast carcinoma encompasses the phenotypic spectrum whereby epithelial carcinoma cells within a primary tumor acquire mesenchymal features and re-epithelialize to form a cohesive secondary mass at a metastatic site. Such plasticity has implications in progression of breast carcinoma to metastasis, and will likely influence response to therapy. The transcriptional and epigenetic regulation of molecular and cellular processes that underlie breast cancer and result in characteristic changes in cell behavior can be monitored using an increasing array of marker proteins. Amongst these markers exists the potential for emergent prognostic, predictive and therapeutic targeting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Critical phenotypic changes that occur during the progression of breast cancer include the loss of hormone-dependence, acquired resistance to systemic therapies, and increased metastatic potential. We have isolated a series of MCF-7 human breast cancer variants which exhibit hormone-independent growth, antiestrogen resistance, and increased metastatic potential. Analysis of the phenotypes of these variants strongly suggests that changes in the expression of specific genes may be critical to the generation of phenotypic diversity in the process of malignant progression in breast cancer. Epigenetic changes may contribute significantly to the generation of these phenotypic changes observed during breast cancer progression. Many of the characteristics of the progressed phenotypes appear to have arisen in response to appropriate selective pressures (growth in ovariectomized nude mice; growth in the presence of antiestrogens). These observations are consistent with the concept of clonal selection and expansion in the process of malignant progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eighteen breast cancer cell lines were examined for expression of markers of epithelial and fibroblastic differentiation: E-cadherin, desmoplakins, ZO- 1, vimentin, keratin and β1 and β4 integrins. The cell lines were distributed along a spectrum of differentiation from epithelial to fibroblastic phenotypes. The most well-differentiated, epithelioid cell lines contained proteins characteristic of desmosomal, adherens and tight junctions, were adherent to one another on plastic and in the basement membrane matrix Matrigel and were keratin-positive and vimentin-negative. These cell lines were all weakly invasive in an in vitro chemoinvasion assay. The most poorly-differentiated, fibroblastic cell lines were E-cadherin-, desmoplakin- and ZO-1-negative and formed branching structures in Matrigel. They were vimentin-positive, contained only low levels of keratins and were highly invasive in the in vitro chemoinvasion assay. Of all of the markers analyzed, vimentin expression correlated best with in vitro invasive ability and fibroblastic differentiation. In a cell line with unstable expression of vimentin, T47D(CO), the cells that were invasive were of the fibroblastic type. The differentiation markers described here may be useful for analysis of clinical specimens and could potentially provide a more precise measure of differentiation grade yielding more power for predicting prognosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the Mr. 72,000 type IV collagenase (matrix metalloproteinase 2) has been implicated in a variety of normal and pathogenic processes, its activation mechanism in vivo is unclear. We have found that fibroblasts from normal and neoplastic human breast, as well as the sarcomatous human Hs578T and HT1080 cell lines, activate endogenous matrix metalloprotease 2 when cultured on type I collagen gels, but not on plastic, fibronectin, collagen IV, gelatin, matrigel, or basement membrane-like HR9 cell matrix. This activation is monitored by the zymographic detection of Mr 59,000 and/or Mr 62,000 species, requires 2-3 days of culture on vitrogen to manifest, is cycloheximide inhibitable, and correlates with an arborized morphology. A similar activation pattern was seen in these cells in response to Concanavalin A but not transforming growth factor β or 12-O-tetradecanoylphorbol-13-acetate. The interstitial matrix may thus play an important role in regulating matrix degradation in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of resistance to the antiestrogen tamoxifen occurs in a high percentage of initially responsive patients. We have developed a new model in which to investigate acquired resistance to triphenylethylenes. A stepwise in vitro selection of the hormone-independent human breast cancer variant MCF-7/LCC1 against 4-hydroxytamoxifen produced a stable resistant population designated MCF7/LCC2. MCF7/LCC2 cells retain levels of estrogen receptor expression comparable to the parental MCF7/LCC1 and MCF-7 cells. Progesterone receptor expression remains estrogen inducible in MCF7/LCC2 cells, although to levels significantly lower than observed in MCF-7 and MCF7/LCC1 cells. MCF7/ LCC2 cells form tumors in ovariectomized nude mice without estrogen supplementation, and these tumors are tamoxifen resistant but can be tstrogen stimulated. Significantly, MCF7/LCC2 cells have retained sensitivity to the steroidal antiestrogen ICI 182,780. These data suggest that some breast cancer patients who acquire resistance to tamoxifen may not develop cross-resistance to treatment with steroidal antiestrogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carcinogenesis involves the accretion of unprogrammed genetic and epigenetic changes, which lead to dysregulation of the normal control of cell number. But a key clinical turning point in carcinoma progression is the establishment by emigrant cells of secondary growth sites (i.e., metastasis). The metastatic “cascade” comprises numerous steps, including escape from the primary tumor site, penetration of local stroma, entry of local vascular or lymphatic vessels (intravasation), aggregation with platelets, interaction with and adhesion to distant endothelia, extravasation, recolonization, and expansion ( 1), all the time avoiding effective immune clearance and being able to survive in these multiple contexts...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The progression of several cancers is correlated with the increased synthesis of the glycosaminoglycan, hyaluronan. Hyaluronan is synthesized at the plasma membrane by various isoforms of hyaluronan synthases (HAS). The importance of HAS2 expression in highly invasive breast cancer was characterized by the antisense inhibition of HAS2 (ASHAS2). The effect of HAS2 inhibition on cell proliferation, migration, hyaluronan metabolism, and receptor status was characterized in vitro, whereas the effect on tumorigenicity and metastasis was established in vivo. HAS2 inhibition resulted in a 24-hour lag in proliferation that was concomitant to transient arrest of 79% of the cell population in G 0-G1. Inhibition of HAS2 did not alter the expression of the other HAS isoforms, whereas hyaluronidase (HYAL2) and the hyaluronan receptor, CD44, were significantly down-regulated. ASHAS2 cells accumulated greater amounts of high molecular weight hyaluronan (>10,000 kDa) in the culture medium, whereas mock and parental cells liberated less hyaluronan of three distinct molecular weights (100, 400, and 3,000 kDa). The inhibition of HAS2 in the highly invasive MDA-MB-231 breast cancer cell line inhibited the initiation and progression of primary and secondary tumor formation following s.c. and intracardiac inoculation into nude mice, whereas controls readily established both primary and secondary tumors. The lack of primary and secondary tumor formation was manifested by increased survival times where ASHAS2 animals survived 172% longer than the control animals. Collectively, these unique results strongly implicate the central role of HAS2 in the initiation and progression of breast cancer, potentially highlighting the codependency between HAS2, CD44, and HYAL2 expression. ©2005 American Association for Cancer Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ConA-induced cell surface activation of pro-matrix metalloproteinase-2 (pro-MMP-2) by MDA-MB-231 human breast cancer cells is apparently mediated by up-regulation of membrane type 1 MMP (MT1-MMP) through transcriptional and posttranscriptional mechanisms. Here, we have explored the respective roles of cell surface clustering and protein tyrosine phosphorylation in the ConA- induction effects. Treatment with succinyl-ConA, a variant lacking significant clusterability, partially stimulated MT1-MMP mRNA and protein levels but did not induce MMP-2 activation, suggesting that clustering contributes to the transcriptional regulation by ConA but appears to be critical for the nontranscriptional component. We further found that genistein, an inhibitor of tyrosine phosphorylation, blocked ConA-induced pro-MMP-2 activation and ConA-induced MT1-MMP mRNA level in a dose-dependent manner, implicating tyrosine phosphorylation in the transcriptional aspect. This was confirmed by the dose-dependent promotion of pro-MMP-2 activation by sodium orthovanadate in the presence of suboptimal concentrations of ConA (7.5 μg/ml), with optimal effects seen at 25 μg/g orthovanadate. Genistein did not inhibit the ConA potentiation of MMP-2 activation in MCF-7 cells, in which transfected MT1-MMP is driven by a heterologous promoter, supporting the major implication of phosphotyrosine in the transcriptional component of ConA regulation. These data describe a major signaling event upstream of MT1- MMP induction by ConA and set the stage for further analysis of the nontranscriptional component.