193 resultados para Wheatstone bridge
Resumo:
The method on concurrent multi-scale model of structural behavior (CMSM-of-SB) for the purpose of structural health monitoring including model updating and validating has been studied. The detailed process of model updating and validating is discussed in terms of reduced scale specimen of the steel box girder in longitudinal stiffening truss of a long span bridge. Firstly, some influence factors affecting the accuracy of the CMSM-of-SB including the boundary restraint regidity, the geometry and material parameters on the toe of the weld and its neighbor are analyzed using sensitivity method. Then, sensitivity-based model updating technology is adopted to update the developed CMSM-of-SB and model verification is carried out through calculating and comparing stresses on different locations under various loading from dynamic characteristic and static response. It can be concluded that the CMSM-of-SB based on the substructure method is valid.
Resumo:
The purpose of this article is to describe a project with one Torres Strait Islander Community. It provides some insights into parents’ funds of knowledge that are mathematical in nature, such as sorting shells and giving fish. The idea of funds of knowledge is based on the premise that people are competent and have knowledge that has been historically and culturally accumulated into a body of knowledge and skills essential for their functioning and well-being. This knowledge is then practised throughout their lives and passed onto the next generation of children. Through adopting a community research approach, funds of knowledge that can be used to validate the community’s identities as knowledgeable people, can also be used as foundations for future learnings for teachers, parents and children in the early years of school. They can be the bridge that joins a community’s funds of knowledge with schools validating that knowledge.
Resumo:
Public health decision making is critically dependant on accurate, timely and reliable information. There is a widespread belief that most of the national and sub-national health information systems fail in providing much needed information support for evidence based health planning and interventions. This situation is more acute in developing nations where resources are either stagnant or decreasing, coupled with the situations of demographic transition and double burden of diseases. Literature abounds with publications, which provide information on misguided health interventions in developing nations, leading to failure and waste of resources. Health information system failure is widely blamed for this situation. Nevertheless, there is a dearth of comprehensive evaluations of existing national or sub-national health information systems, especially in the region of South-East Asia. This study makes an attempt to bridge this knowledge gap by evaluating a regional health information system in Sri Lanka. It explores the strengths and weaknesses of the current health information system and related causative factors in a decentralised health system and then proposes strategic recommendations for reform measures. A mix methodological and phased approach was adopted to reach the objectives. An initial self administered questionnaire survey was conducted among health managers to study their perceptions in relation to the regional health information system and its management support. The survey findings were used to establish the presence of health information system failure in the region and also as a precursor to the more in-depth case study which was followed. The sources of data for the case study were literature review, document analysis and key stake holder interviews. Health information system resources, health indicators, data sources, data management, data quality, and information dissemination were the six major components investigated. The study findings reveal that accurate, timely and reliable health information is unavailable and therefore evidence based health planning is lacking in the studied health region. Strengths and weaknesses of the current health information system were identified and strategic recommendations were formulated accordingly. It is anticipated that this research will make a significant and multi-fold contribution for health information management in developing countries. First, it will attempt to bridge an existing knowledge gap by presenting the findings of a comprehensive case study to reveal the strengths and weaknesses of a decentralised health information system in a developing country. Second, it will enrich the literature by providing an assessment tool and a research method for the evaluation of regional health information systems. Third, it will make a rewarding practical contribution by presenting valuable guidelines for improving health information systems in regional Sri Lanka.
Resumo:
Teacher education programs bridge the interests of two worlds - the world of educational theory and the world of teaching practice. Despite teacher educators’ best attempts to convince pre-service teachers that theory and practice are linked, it is often during their practicum placements when pre-service teachers claim that their ‘real’ learning takes place. It is also on practicum when students teachers face (and are surprised by) the ‘extensive decision-making role of the teacher, the emotional aspects of teaching, and the sheer volume of work’ (p.4). Kosnick and Beck’s new book Teaching in a Nutshell utilises the authors’ extensive research with beginning teachers to help students ‘navigate’ their way through their programs. Identifying what they have found in their research to be the seven key priorities for teachers, each chapter follows a helpful structure beginning with an overview of current thinking in the priority area, followed by a case study of a beginning teacher showing how s/he implements the strategy...
Resumo:
This thesis develops a detailed conceptual design method and a system software architecture defined with a parametric and generative evolutionary design system to support an integrated interdisciplinary building design approach. The research recognises the need to shift design efforts toward the earliest phases of the design process to support crucial design decisions that have a substantial cost implication on the overall project budget. The overall motivation of the research is to improve the quality of designs produced at the author's employer, the General Directorate of Major Works (GDMW) of the Saudi Arabian Armed Forces. GDMW produces many buildings that have standard requirements, across a wide range of environmental and social circumstances. A rapid means of customising designs for local circumstances would have significant benefits. The research considers the use of evolutionary genetic algorithms in the design process and the ability to generate and assess a wider range of potential design solutions than a human could manage. This wider ranging assessment, during the early stages of the design process, means that the generated solutions will be more appropriate for the defined design problem. The research work proposes a design method and system that promotes a collaborative relationship between human creativity and the computer capability. The tectonic design approach is adopted as a process oriented design that values the process of design as much as the product. The aim is to connect the evolutionary systems to performance assessment applications, which are used as prioritised fitness functions. This will produce design solutions that respond to their environmental and function requirements. This integrated, interdisciplinary approach to design will produce solutions through a design process that considers and balances the requirements of all aspects of the design. Since this thesis covers a wide area of research material, 'methodological pluralism' approach was used, incorporating both prescriptive and descriptive research methods. Multiple models of research were combined and the overall research was undertaken following three main stages, conceptualisation, developmental and evaluation. The first two stages lay the foundations for the specification of the proposed system where key aspects of the system that have not previously been proven in the literature, were implemented to test the feasibility of the system. As a result of combining the existing knowledge in the area with the newlyverified key aspects of the proposed system, this research can form the base for a future software development project. The evaluation stage, which includes building the prototype system to test and evaluate the system performance based on the criteria defined in the earlier stage, is not within the scope this thesis. The research results in a conceptual design method and a proposed system software architecture. The proposed system is called the 'Hierarchical Evolutionary Algorithmic Design (HEAD) System'. The HEAD system has shown to be feasible through the initial illustrative paper-based simulation. The HEAD system consists of the two main components - 'Design Schema' and the 'Synthesis Algorithms'. The HEAD system reflects the major research contribution in the way it is conceptualised, while secondary contributions are achieved within the system components. The design schema provides constraints on the generation of designs, thus enabling the designer to create a wide range of potential designs that can then be analysed for desirable characteristics. The design schema supports the digital representation of the human creativity of designers into a dynamic design framework that can be encoded and then executed through the use of evolutionary genetic algorithms. The design schema incorporates 2D and 3D geometry and graph theory for space layout planning and building formation using the Lowest Common Design Denominator (LCDD) of a parameterised 2D module and a 3D structural module. This provides a bridge between the standard adjacency requirements and the evolutionary system. The use of graphs as an input to the evolutionary algorithm supports the introduction of constraints in a way that is not supported by standard evolutionary techniques. The process of design synthesis is guided as a higher level description of the building that supports geometrical constraints. The Synthesis Algorithms component analyses designs at four levels, 'Room', 'Layout', 'Building' and 'Optimisation'. At each level multiple fitness functions are embedded into the genetic algorithm to target the specific requirements of the relevant decomposed part of the design problem. Decomposing the design problem to allow for the design requirements of each level to be dealt with separately and then reassembling them in a bottom up approach reduces the generation of non-viable solutions through constraining the options available at the next higher level. The iterative approach, in exploring the range of design solutions through modification of the design schema as the understanding of the design problem improves, assists in identifying conflicts in the design requirements. Additionally, the hierarchical set-up allows the embedding of multiple fitness functions into the genetic algorithm, each relevant to a specific level. This supports an integrated multi-level, multi-disciplinary approach. The HEAD system promotes a collaborative relationship between human creativity and the computer capability. The design schema component, as the input to the procedural algorithms, enables the encoding of certain aspects of the designer's subjective creativity. By focusing on finding solutions for the relevant sub-problems at the appropriate levels of detail, the hierarchical nature of the system assist in the design decision-making process.
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is the world’s fifth major cereal crop and holds importance as a construction material, food and fodder source. More recently, the potential of this plant as a biofuel source has been noted. Despite its agronomic importance, the use of sorghum production is being constrained by both biotic and abiotic factors. These challenges could be addressed by the use of genetic engineering strategies to complement conventional breeding techniques. However, sorghum is one of the most recalcitrant crops for genetic modification with the lack of an efficient tissue culture system being amongst the chief reasons. Therefore, the aim of this study was to develop an efficient tissue culture system for establishing regenerable embryogenic cell lines, micropropagation and acclimatisation for Sorghum bicolor and use this to optimise parameters for genetic transformation via Agrobacterium-mediated transformation and microprojectile bombardment. Using five different sorghum cultivars, SA281, 296B, SC49, Wray and Rio, numerous parameters were investigated in an attempt to establish an efficient and reproducible tissue culture and transformation system. Using immature embryos (IEs) as explants, regenerable embryogenic cell lines (ECLs) could only be established from cultivars SA281 and 296B. Large amounts of phenolics were produced from IEs of cultivars, SC49, Wary and Rio, and these compounds severely hindered callus formation and development. Cultivar SA281 also produced phenolics during regeneration. Attempts to suppress the production of these compounds in cultivars SA281 and SC49 using activated charcoal, PVP, ascorbic acid, citric acid and liquid filter paper bridge methods were either ineffective or had a detrimental effect on embryogenic callus formation, development and regeneration. Immature embryos sourced during summer were found to be far more responsive in vitro than those sourced during winter. In an attempt to overcome this problem, IEs were sourced from sorghum grown under summer conditions in either a temperature controlled glasshouse or a growth chamber. However, the performance of these explants was still inferior to that of natural summer-sourced explants. Leaf whorls, mature embryos, shoot tips and leaf primordia were found to be unsuitable as explants for establishing ECLs in sorghum cultivars SA281 and 296B. Using the florets of immature inflorescences (IFs) as explants, however, ECLs were established and regenerated for these cultivars, as well as for cultivar Tx430, using callus induction media, SCIM, and regeneration media, VWRM. The best in vitro responses, from the largest possible sized IFs, were obtained using plants at the FL-2 stage (where the last fully opened leaf was two leaves away from the flag leaf). Immature inflorescences could be stored at 25oC for up to three days without affecting their in vitro responses. Compared to IEs, the IFs were more robust in tissue culture and showed responses which were season and growth condition independent. A micropropagation protocol for sorghum was developed in this study. The optimum plant growth regulator (PGR) combination for the micropropagation of in vitro regenerated plantlets was found to be 1.0 mg/L BAP in combination with 0.5 mg/L NAA. With this protocol, cultivars 296B and SA281 produced an average of 57 and 13 off-shoots per plantlet, respectively. The plantlets were successfully acclimatised and developed into phenotypically normal plants that set seeds. A simplified acclimatisation protocol for in vitro regenerated plantlets was also developed. This protocol involved deflasking in vitro plantlets with at least 2 fully-opened healthy leaves and at least 3 roots longer than 1.5 cm, washing the media from the roots with running tap water, planting in 100 mm pots and placing in plastic trays covered with a clear plastic bag in a plant growth chamber. After seven days, the corners of the plastic cover were opened and the bags were completely removed after 10 days. All plantlets were successfully acclimatised regardless of whether 1:1 perlite:potting mix, potting mix, UC mix or vermiculite were used as potting substrates. Parameters were optimised for Agrobacterium-mediated transformation (AMT) of cultivars SA281, 296B and Tx430. The optimal conditions were the use of Agrobacterium strain LBA4404 at an inoculum density of 0.5 OD600nm, heat shock at 43oC for 3 min, use of the surfactant Pluronic F-68 (0.02% w/v) in the inoculation media with a pH of 5.2 and a 3 day co-cultivation period in dark at 22oC. Using these parameters, high frequencies of transient GFP expression was observed in IEs precultured on callus initiation media for 1-7 days as well as in four weeks old IE- and IF-derived callus. Cultivar SA281 appeared very sensitive to Agrobacterium since all tissue turned necrotic within two weeks post-exposure. For cultivar 296B, GFP expression was observed up to 20 days post co-cultivation but no stably transformed plants were regenerated. Using cultivar Tx430, GFP was expressed for up to 50 days post co-cultivation. Although no stably transformed plants of this cultivar were regenerated, this was most likely due to the use of unsuitable regeneration media. Parameters were optimised for transformation by particle bombardment (PB) of cultivars SA281, 296B and Tx430. The optimal conditions were use of 3-7 days old IEs and 4 weeks old IF callus, 4 hour pre- and post-bombardment osmoticum treatment, use of 0.6 µm gold microparticles, helium pressure of 1500 kPa and target distance of 15 cm. Using these parameters for PB, transient GFP expression was observed for up to 14, 30 and 50 days for cultivars SA281, 296B and Tx430, respectively. Further, the use of PB resulted in less tissue necrosis compared to AMT for the respective cultivars. Despite the presence of transient GFP expression, no stably transformed plants were regenerated. The establishment of regenerable ECLs and the optimization of AMT and PB parameters in this study provides a platform for future efforts to develop an efficient transformation protocol for sorghum. The development of GM sorghum will be an important step towards improving its agronomic properties as well as its exploitation for biofuel production.
Resumo:
Human activity-induced vibrations in slender structural sys tems become apparent in many different excitation modes and consequent action effects that cause discomfort to occupants, crowd panic and damage to public infrastructure. Resulting loss of public confidence in safety of structures, economic losses, cost of retrofit and repairs can be significant. Advanced computational and visualisation techniques enable engineers and architects to evolve bold and innovative structural forms, very often without precedence. New composite and hybrid materials that are making their presence in structural systems lack historical evidence of satisfactory performance over anticipated design life. These structural systems are susceptible to multi-modal and coupled excitation that are very complex and have inadequate design guidance in the present codes and good practice guides. Many incidents of amplified resonant response have been reported in buildings, footbridges, stadia a nd other crowded structures with adverse consequences. As a result, attenuation of human-induced vibration of innovative and slender structural systems very ofte n requires special studies during the design process. Dynamic activities possess variable characteristics and thereby induce complex responses in structures that are sensitive to parametric variations. Rigorous analytical techniques are available for investigation of such complex actions and responses to produce acceptable performance in structural systems. This paper presents an overview and a critique of existing code provisions for human-induced vibration followed by studies on the performance of three contrasting structural systems that exhibit complex vibration. The dynamic responses of these systems under human-induced vibrations have been carried out using experimentally validated computer simulation techniques. The outcomes of these studies will have engineering applications for safe and sustainable structures and a basis for developing design guidance.
Resumo:
APPENDIX A : PAVEMENT QUALITY (Zhanmin Zhang, Michael R. Murphy, Robert Harrison), 7 pages -- APPENDIX B : BRIDGE QUALITY (Jose Weissmann, Angela J. Weissmann), 6 pages -- APPENDIX C : URBAN TRAFFIC CONGESTION (Tim Lomax, David Schrank), 32 pages -- APPENDIX D: RURAL CORRIDORS (Tim Lomax, David Schrank), 6 pages -- APPENDIX E: ADDITIONAL REVENUE SOURCE OPTIONS FOR PAVEMENT AND BRIDGE MAINTENANCE (Mike Murphy, Seokho Chi, Randy Machemehl, Khali Persad, Robert Harrison, Zhanmin Zhang), 81 pages -- APPENDIX F: FUNDING TRANSPORTATION IMPROVEMENTS (David Ellis, Brianne Glover, Nick Norboge, Wally Crittenden), 19 pages -- APPENDIX G: ESTIMATING VEHICLE OPERATING COSTS AND PAVEMENT DETERIORATION (by Robert Harrison), 4 pages
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
As a part of vital infrastructure and transportation network, bridge structures must function safely at all times. Bridges are designed to have a long life span. At any point in time, however, some bridges are aged. The ageing of bridge structures, given the rapidly growing demand of heavy and fast inter-city passages and continuous increase of freight transportation, would require diligence on bridge owners to ensure that the infrastructure is healthy at reasonable cost. In recent decades, a new technique, structural health monitoring (SHM), has emerged to meet this challenge. In this new engineering discipline, structural modal identification and damage detection have formed a vital component. Witnessed by an increasing number of publications is that the change in vibration characteristics is widely and deeply investigated to assess structural damage. Although a number of publications have addressed the feasibility of various methods through experimental verifications, few of them have focused on steel truss bridges. Finding a feasible vibration-based damage indicator for steel truss bridges and solving the difficulties in practical modal identification to support damage detection motivated this research project. This research was to derive an innovative method to assess structural damage in steel truss bridges. First, it proposed a new damage indicator that relies on optimising the correlation between theoretical and measured modal strain energy. The optimisation is powered by a newly proposed multilayer genetic algorithm. In addition, a selection criterion for damage-sensitive modes has been studied to achieve more efficient and accurate damage detection results. Second, in order to support the proposed damage indicator, the research studied the applications of two state-of-the-art modal identification techniques by considering some practical difficulties: the limited instrumentation, the influence of environmental noise, the difficulties in finite element model updating, and the data selection problem in the output-only modal identification methods. The numerical (by a planer truss model) and experimental (by a laboratory through truss bridge) verifications have proved the effectiveness and feasibility of the proposed damage detection scheme. The modal strain energy-based indicator was found to be sensitive to the damage in steel truss bridges with incomplete measurement. It has shown the damage indicator's potential in practical applications of steel truss bridges. Lastly, the achievement and limitation of this study, and lessons learnt from the modal analysis have been summarised.
Resumo:
Purpose: The Australian Universities Radiation Therapy Student Clinical Assessment Form (AURTSCAF) was designed to assess the clinical skills of radiation therapy (RT) students from the six universities that offer entry level RT programs. Given the AURTSCAF has now been in use for over two years, the Radiation Therapy Program Coordinators (RTPC) group initiated a post implementation evaluation survey. This formed the final phase of the AURTSCAF project and was funded by the Radiation Oncology Division of the Department of Health and Ageing. Methods: A cross-sectional designed survey using purposive sampling was distributed via email to all RT clinical sites. The survey asked questions about the requirements of a pass grade for students at different stages of their program, and the addition of a new category of assessment related to fitness to practise. Response types included both forced choice closed ended responses and open ended responses. There was also a section for open comments about the AURTSCAF. Results: There were 100 responses (55%) from clinicians who had utilised the assessment form over the previous 12 month period. Responses highlighted several positives with regard to the utility and implementation of the form. Comments regarding areas for improvement with the standardisation of the grading of students and consensus for the addition of a new domain in fitness for practise have informed the recommended changes proposed for 2012. Conclusion: This evaluation has provided a representative sample of the views of clinicians involved in assessing students on clinical placement. Recommendations include the addition of the sixth domain of assessment: Fitness for practise, the addition of descriptors and prompts for this domain in the user guide, the addition of a consensus statement about the use of the rating scale and dissemination of the proposed changes nationally.
Resumo:
Purpose – This purpose of this paper is to introduce the new Smart and Sustainable Built Environment (SASBE) journal to readers by discussing the background and underlying principles of its establishment, the editorial visions, and the range of papers selected in this first issue. It will encourage readers and potential authors to consider the need for integrated approaches to sustainability problems, to take on emerging challenges in the built environment and to join the SASBE journal in finding and promoting optimum solutions. Design/methodology/approach – This paper explores the evolving nature of sustainability, the recent trends of sustainability endeavours in built environment and the current knowledge gaps. The need to bridge these gaps is then discussed in the context of suggested remedies and justifications. This leads to the development of a smart and sustainable built environment as a R&D philosophy for world researchers as part of their interactions with professional bodies and agencies such as CIB, UNEP and iiSBE, and the establishment of the SASBE journal. Findings – Sustainable development in the built environment requires holistic thinking and decision making and innovative solutions that enhance sustainability and result in mutually beneficial outcomes for all stakeholders. A dedicated forum, through the journal of SASBE, is much needed for the exploration, discussion, debate, and promotion of these integrated approaches. Originality/value – Through presenting an overview of the current issues and identifying gaps in the understanding and pursuit of sustainability in the built environment, this paper suggests potential areas for future research and practice as well as possible topics for authors to make new contributions.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector infrastructure market, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI) by multinational contractors. This study aims to update progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major road and bridges. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors into Australia. Elsewhere, the authors have developed Dunning’s principal hypothesis to suit the context of this research and to address a weakness arising in this hypothesis that is based on a nominal (yes or no) approach to the ownership, location and internalisation factors in Dunning's eclectic framework and which fails to speak to the relative explanatory power of these factors. The authors have completed a first stage test of this development of Dunning's hypothesis based on publically available secondary data, in which it was concluded tentatively that the location factor appears to have the greatest explanatory power. This paper aims to present, for the first time, a further and novel development of the operation of Dunning's eclectic paradigm within the context of multinational contracting, as well as a preview of the design and planned analysis of the next empirical stage in this research concerning case studies. Finally, and beyond the theoretical contributions expected, other expected contributions are mentioned concerning research method and practical implications.