456 resultados para UNKNOWN INPUTS
Resumo:
Alcohol use disorders (AUDs) impact millions of individuals and there remain few effective treatment strategies. Despite evidence that neuronal nicotinic acetylcholine receptors (nAChRs) have a role in AUDs, it has not been established which subtypes of the nAChR are involved. Recent human genetic association studies have implicated the gene cluster CHRNA3-CHRNA5-CHRNB4 encoding the α3, α5, and β4 subunits of the nAChR in susceptibility to develop nicotine and alcohol dependence; however, their role in ethanol-mediated behaviors is unknown due to the lack of suitable and selective research tools. To determine the role of the α3, and β4 subunits of the nAChR in ethanol self-administration, we developed and characterized high-affinity partial agonists at α3β4 nAChRs, CP-601932, and PF-4575180. Both CP-601932 and PF-4575180 selectively decrease ethanol but not sucrose consumption and operant self-administration following long-term exposure. We show that the functional potencies of CP-601932 and PF-4575180 at α3β4 nAChRs correlate with their unbound rat brain concentrations, suggesting that the effects on ethanol self-administration are mediated via interaction with α3β4 nAChRs. Also varenicline, an approved smoking cessation aid previously shown to decrease ethanol consumption and seeking in rats and mice, reduces ethanol intake at unbound brain concentrations that allow functional interactions with α3β4 nAChRs. Furthermore, the selective α4β2(*) nAChR antagonist, DHβE, did not reduce ethanol intake. Together, these data provide further support for the human genetic association studies, implicating CHRNA3 and CHRNB4 genes in ethanol-mediated behaviors. CP-601932 has been shown to be safe in humans and may represent a potential novel treatment for AUDs.
Resumo:
Axon guidance by molecular gradients plays a crucial role in wiring up the nervous system. However, the mechanisms axons use to detect gradients are largely unknown. We first develop a Bayesian “ideal observer” analysis of gradient detection by axons, based on the hypothesis that a principal constraint on gradient detection is intrinsic receptor binding noise. Second, from this model, we derive an equation predicting how the degree of response of an axon to a gradient should vary with gradient steepness and absolute concentration. Third, we confirm this prediction quantitatively by performing the first systematic experimental analysis of how axonal response varies with both these quantities. These experiments demonstrate a degree of sensitivity much higher than previously reported for any chemotacting system. Together, these results reveal both the quantitative constraints that must be satisfied for effective axonal guidance and the computational principles that may be used by the underlying signal transduction pathways, and allow predictions for the degree of response of axons to gradients in a wide variety of in vivo and in vitro settings.
Resumo:
In this paper we propose a new method for face recognition using fractal codes. Fractal codes represent local contractive, affine transformations which when iteratively applied to range-domain pairs in an arbitrary initial image result in a fixed point close to a given image. The transformation parameters such as brightness offset, contrast factor, orientation and the address of the corresponding domain for each range are used directly as features in our method. Features of an unknown face image are compared with those pre-computed for images in a database. There is no need to iterate, use fractal neighbor distances or fractal dimensions for comparison in the proposed method. This method is robust to scale change, frame size change and rotations as well as to some noise, facial expressions and blur distortion in the image
Resumo:
We present an algorithm called Optimistic Linear Programming (OLP) for learning to optimize average reward in an irreducible but otherwise unknown Markov decision process (MDP). OLP uses its experience so far to estimate the MDP. It chooses actions by optimistically maximizing estimated future rewards over a set of next-state transition probabilities that are close to the estimates, a computation that corresponds to solving linear programs. We show that the total expected reward obtained by OLP up to time T is within C(P) log T of the reward obtained by the optimal policy, where C(P) is an explicit, MDP-dependent constant. OLP is closely related to an algorithm proposed by Burnetas and Katehakis with four key differences: OLP is simpler, it does not require knowledge of the supports of transition probabilities, the proof of the regret bound is simpler, but our regret bound is a constant factor larger than the regret of their algorithm. OLP is also similar in flavor to an algorithm recently proposed by Auer and Ortner. But OLP is simpler and its regret bound has a better dependence on the size of the MDP.
Resumo:
The development of the town of Cassano door, unknown time, first to build a chapel, a church filiare then, the town center, the building, intended for the cult of Mary, is described during the visit of Bishop Diocesan Pastoral Feliciano Ninguarda : "Item in the Middle huius pages, pro COMMODIT incolarum, east extructum sacellum, seu oratorium B. Dicatum Mariae Virginia, eastern parvum penes quo cum bell tower, ubi ab rates annis not fuit celebratum, quia non est to formam decretorum extructum [...]» [... down in Annex more information]
Resumo:
We provide an algorithm that achieves the optimal regret rate in an unknown weakly communicating Markov Decision Process (MDP). The algorithm proceeds in episodes where, in each episode, it picks a policy using regularization based on the span of the optimal bias vector. For an MDP with S states and A actions whose optimal bias vector has span bounded by H, we show a regret bound of ~ O(HS p AT ). We also relate the span to various diameter-like quantities associated with the MDP, demonstrating how our results improve on previous regret bounds.
Resumo:
We study the problem of allocating stocks to dark pools. We propose and analyze an optimal approach for allocations, if continuous-valued allocations are allowed. We also propose a modification for the case when only integer-valued allocations are possible. We extend the previous work on this problem to adversarial scenarios, while also improving on their results in the iid setup. The resulting algorithms are efficient, and perform well in simulations under stochastic and adversarial inputs.
Resumo:
Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or "indeterminate" 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition.
Resumo:
Inverse problems based on using experimental data to estimate unknown parameters of a system often arise in biological and chaotic systems. In this paper, we consider parameter estimation in systems biology involving linear and non-linear complex dynamical models, including the Michaelis–Menten enzyme kinetic system, a dynamical model of competence induction in Bacillus subtilis bacteria and a model of feedback bypass in B. subtilis bacteria. We propose some novel techniques for inverse problems. Firstly, we establish an approximation of a non-linear differential algebraic equation that corresponds to the given biological systems. Secondly, we use the Picard contraction mapping, collage methods and numerical integration techniques to convert the parameter estimation into a minimization problem of the parameters. We propose two optimization techniques: a grid approximation method and a modified hybrid Nelder–Mead simplex search and particle swarm optimization (MH-NMSS-PSO) for non-linear parameter estimation. The two techniques are used for parameter estimation in a model of competence induction in B. subtilis bacteria with noisy data. The MH-NMSS-PSO scheme is applied to a dynamical model of competence induction in B. subtilis bacteria based on experimental data and the model for feedback bypass. Numerical results demonstrate the effectiveness of our approach.
Resumo:
The action potential (ap) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Biophysically detailed mathematical models of the ap have grown larger in terms of the variables and parameters required to model new findings in subcellular ionic mechanisms. The fitting of parameters to such models has seen a large degree of parameter and module re-use from earlier models. An alternative method for modelling electrically exciteable cardiac tissue is a phenomenological model, which reconstructs tissue level ap wave behaviour without subcellular details. A new parameter estimation technique to fit the morphology of the ap in a four variable phenomenological model is presented. An approximation of a nonlinear ordinary differential equation model is established that corresponds to the given phenomenological model of the cardiac ap. The parameter estimation problem is converted into a minimisation problem for the unknown parameters. A modified hybrid Nelder–Mead simplex search and particle swarm optimization is then used to solve the minimisation problem for the unknown parameters. The successful fitting of data generated from a well known biophysically detailed model is demonstrated. A successful fit to an experimental ap recording that contains both noise and experimental artefacts is also produced. The parameter estimation method’s ability to fit a complex morphology to a model with substantially more parameters than previously used is established.
Resumo:
Autonomous development of sensorimotor coordination enables a robot to adapt and change its action choices to interact with the world throughout its lifetime. The Experience Network is a structure that rapidly learns coordination between visual and haptic inputs and motor action. This paper presents methods which handle the high dimensionality of the network state-space which occurs due to the simultaneous detection of multiple sensory features. The methods provide no significant increase in the complexity of the underlying representations and also allow emergent, task-specific, semantic information to inform action selection. Experimental results show rapid learning in a real robot, beginning with no sensorimotor mappings, to a mobile robot capable of wall avoidance and target acquisition.
Resumo:
Between 2001 and 2005, the US airline industry faced financial turmoil. At the same time, the European airline industry entered a period of substantive deregulation. This period witnessed opportunities for low-cost carriers to become more competitive in the market as a result of these combined events. To help assess airline performance in the aftermath of these events, this paper provides new evidence of technical efficiency for 42 national and international airlines in 2006 using the data envelopment analysis (DEA) bootstrap approach first proposed by Simar and Wilson (J Econ, 136:31-64, 2007). In the first stage, technical efficiency scores are estimated using a bootstrap DEA model. In the second stage, a truncated regression is employed to quantify the economic drivers underlying measured technical efficiency. The results highlight the key role played by non-discretionary inputs in measures of airline technical efficiency.
Resumo:
Probabilistic topic models have recently been used for activity analysis in video processing, due to their strong capacity to model both local activities and interactions in crowded scenes. In those applications, a video sequence is divided into a collection of uniform non-overlaping video clips, and the high dimensional continuous inputs are quantized into a bag of discrete visual words. The hard division of video clips, and hard assignment of visual words leads to problems when an activity is split over multiple clips, or the most appropriate visual word for quantization is unclear. In this paper, we propose a novel algorithm, which makes use of a soft histogram technique to compensate for the loss of information in the quantization process; and a soft cut technique in the temporal domain to overcome problems caused by separating an activity into two video clips. In the detection process, we also apply a soft decision strategy to detect unusual events.We show that the proposed soft decision approach outperforms its hard decision counterpart in both local and global activity modelling.
Resumo:
This paper presents a key based generic model for digital image watermarking. The model aims at addressing an identified gap in the literature by providing a basis for assessing different watermarking requirements in various digital image applications. We start with a formulation of a basic watermarking system, and define system inputs and outputs. We then proceed to incorporate the use of keys in the design of various system components. Using the model, we also define a few fundamental design and evaluation parameters. To demonstrate the significance of the proposed model, we provide an example of how it can be applied to formally define common attacks.
Resumo:
Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.