361 resultados para Topographic map complex
Resumo:
The dawn of the twenty-first century encouraged a number of scientific and technological organisations to identify what they saw as ‘Grand Challenges and Opportunities’. Issues of environment and health featured very prominently in these quite short lists, as can be seen from a sample of these challenges in Table 1. Indeed, the first two lists of challenges in Table 1 were identified as for the environment and for health, respectively.
Resumo:
The genera Ustilago, Sporisorium and Macalpinomyces are a polyphyletic complex of plant pathogenic fungi. The four main morphological characters used to define these genera have been considered homoplasious and not useful for resolving the complex. This study re-evaluates character homology and discusses the use of these characters for defining monophyletic groups recovered from a reconstructed phylogeny using four nuclear loci. Generic delimitation of smut fungi based on their hosts is also discussed as a means for identifying genera within this group. Morphological characters and host specificity can be used to circumscribe genera within the Ustilago-Sporisorium-Macalpinomyces complex.
Resumo:
Purpose of review: The study provides a review of current evidence about the role of complex nonpharmacological strategies in managing the multidimensional components of the breathlessness experience for individuals with life-limiting conditions. Recent findings: Evidence continues to demonstrate the significant impact of breathlessness on patients’ quality of life, day-to-day activity, and physical and psychosocial functioning. Recent evidence also confirms that patients draw on a number of self-initiated actions to cope with breathlessness, although many do not use strategies that are supported by a growing body of evidence from randomized controlled trials. Current literature supports the use of multicomponent, nonpharmacological interventions comprising strategies to improve breathing efficiency and reducing psychological distress to manage breathlessness. However trials of these approaches have mostly been conducted among patients with chronic obstructive pulmonary disease (COPD) or lung cancer, and few studies have investigated the benefits of nonpharmacological for patients in later stages of disease. Further investigation of interventions is required across a broader range of chronic life-limiting conditions. Addressing breathlessness and its co-occurring symptoms (symptom clusters) is also an area for future enquiry. Summary: The experience of breathlessness and strategies adopted by patients to manage the experience highlight the importance of multidimensional approaches to improve outcomes for patients with life-limiting conditions. There is good evidence to support the role of multicomponent, nonpharmacological interventions in reducing breathlessness for patients with COPD and lung cancer, although further studies are required to understand the particular clinical contexts in which such interventions are appropriate.
Resumo:
Many older people have difficulties using modern consumer products due to increased product complexity both in terms of functionality and interface design. Previous research has shown that older people have more difficulty in using complex devices intuitively when compared to the younger. Furthermore, increased life expectancy and a falling birth rate have been catalysts for changes in world demographics over the past two decades. This trend also suggests a proportional increase of older people in the work-force. This realisation has led to research on the effective use of technology by older populations in an effort to engage them more productively and to assist them in leading independent lives. Ironically, not enough attention has been paid to the development of interaction design strategies that would actually enable older users to better exploit new technologies. Previous research suggests that if products are designed to reflect people's prior knowledge, they will appear intuitive to use. Since intuitive interfaces utilise domain-specific prior knowledge of users, they require minimal learning for effective interaction. However, older people are very diverse in their capabilities and domain-specific prior knowledge. In addition, ageing also slows down the process of acquiring new knowledge. Keeping these suggestions and limitations in view, the aim of this study was set to investigate possible approaches to developing interfaces that facilitate their intuitive use by older people. In this quest to develop intuitive interfaces for older people, two experiments were conducted that systematically investigated redundancy (the use of both text and icons) in interface design, complexity of interface structure (nested versus flat), and personal user factors such as cognitive abilities, perceived self-efficacy and technology anxiety. All of these factors could interfere with intuitive use. The results from the first experiment suggest that, contrary to what was hypothesised, older people (65+ years) completed the tasks on the text only based interface design faster than on the redundant interface design. The outcome of the second experiment showed that, as expected, older people took more time on a nested interface. However, they did not make significantly more errors compared with younger age groups. Contrary to what was expected, older age groups also did better under anxious conditions. The findings of this study also suggest that older age groups are more heterogeneous in their capabilities and their intuitive use of contemporary technological devices is mediated more by domain-specific technology prior knowledge and by their cognitive abilities, than chronological age. This makes it extremely difficult to develop product interfaces that are entirely intuitive to use. However, by keeping in view the cognitive limitations of older people when interfaces are developed, and using simple text-based interfaces with flat interface structure, would help them intuitively learn and use complex technological products successfully during early encounter with a product. These findings indicate that it might be more pragmatic if interfaces are designed for intuitive learning rather than for intuitive use. Based on this research and the existing literature, a model for adaptable interface design as a strategy for developing intuitively learnable product interfaces was proposed. An adaptable interface can initially use a simple text only interface to help older users to learn and successfully use the new system. Over time, this can be progressively changed to a symbols-based nested interface for more efficient and intuitive use.
Resumo:
As one of the measures for decreasing road traffic noise in a city, the control of the traffic flow and the physical distribution is considered. To conduct the measure effectively, the model for predicting the traffic flow in the citywide road network is necessary. In this study, the existing model named AVENUE was used as a traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model and the sound propagation model, and the new road traffic noise prediction model was established. As a case study, the prediction model was applied to the road network of Tsukuba city in Japan and the noise map of the city was made. To examine the calculation accuracy of the noise map, the calculated values of the noise at the main roads were compared with the measured values. As a result, it was found that there was a possibility that the high accuracy noise map of the city could be made by using the noise prediction model developed in this study.
Resumo:
We applied a texture-based flow visualisation technique to a numerical hydrodynamic model of the Pumicestone Passage in southeast Queensland, Australia. The quality of the visualisations using our flow visualisation tool, are compared with animations generated using more traditional drogue release plot and velocity contour and vector techniques. The texture-based method is found to be far more effective in visualising advective flow within the model domain. In some instances, it also makes it easier for the researcher to identify specific hydrodynamic features within the complex flow regimes of this shallow tidal barrier estuary as compared with the direct and geometric based methods.
A new model to study healing of a complex femur fracture with concurrent soft tissue injury in sheep
Resumo:
High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed increasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.
Resumo:
Strike-slip faults commonly display structurally complex areas of positive or negative topography. Understanding the development of such areas has important implications for earthquake studies and hydrocarbon exploration. Previous workers identified the key factors controlling the occurrence of both topographic modes and the related structural styles. Kinematic and stress boundary conditions are of first-order relevance. Surface mass transport and material properties affect fault network structure. Experiments demonstrate that dilatancy can generate positive topography even under simple-shear boundary conditions. Here, we use physical models with sand to show that the degree of compaction of the deformed rocks alone can determine the type of topography and related surface fault network structure in simple-shear settings. In our experiments, volume changes of ∼5% are sufficient to generate localized uplift or subsidence. We discuss scalability of model volume changes and fault network structure and show that our model fault zones satisfy geometrical similarity with natural flower structures. Our results imply that compaction may be an important factor in the development of topography and fault network structure along strike-slip faults in sedimentary basins.
Resumo:
Completing a PhD on time is a complex process, influenced by many interacting factors. In this paper we take a Bayesian Network approach to analyzing the factors perceived to be important in achieving this aim. Focusing on a single research group in Mathematical Sciences, we develop a conceptual model to describe the factors considered to be important to students and then quantify the network based on five individual perspectives: the students, a supervisor and a university research students centre manager. The resultant network comprised 37 factors and 40 connections, with an overall probability of timely completion of between 0.6 and 0.8. Across all participants, the four factors that were considered to most directly influence timely completion were personal aspects, the research environment, the research project, and incoming skills.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.
Resumo:
One remaining difficulty in the Information Technology (IT) business value evaluation domain is the direct linkage between IT value and the underlying determinants of IT value or surrogates of IT value. This paper proposes a research that examines the interacting effects of the determinants of IT value, and their influences on IT value. The overarching research question is how those determinants interact with each other and affect the IT value at organizational value. To achieve this, this research embraces a multilevel, complex, and adaptive system view, where the IT value emerges from the interacting of underlying determinants. This research is theoretically grounded on three organizational theories – multilevel theory, complex adaptive systems theory, and adaptive structuration theory. By integrating those theoretical paradigms, this research proposes a conceptual model that focuses on the process where IT value is created from interactions of those determinants. To answer the research question, agent-based modeling technique is used in this research to build a computational representation based on the conceptual model. Computational experimentation will be conducted based on the computational representation. Validation procedures will be applied to consolidate the validity of this model. In the end, hypotheses will be tested using computational experimentation data.
Resumo:
Human computer interaction and interaction design have recognised the need for participatory methods of co-design to contribute to designing human-centred interfaces, systems and services. Design thinking has recently developed as a set of strategies for human-centred co-design in product innovation, management and organisational transformation. Both developments place the designer in a new mediator role, requiring new skills than previously evident. This paper presents preliminary findings from a PhD case study of strategy and innovation consultancy Second Road to discuss these emerging roles of design lead, facilitator, teacher and director in action.
Resumo:
Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.
Resumo:
NaAlH4 and LiBH4 are potential candidate materials for mobile hydrogen storage applications, yet they have the drawback of being highly stable and desorbing hydrogen only at elevated temperatures. In this letter, ab initio density functional theory calculations reveal how the stabilities of the AlH4 and BH4 complex anions will be affected by reducing net anionic charge. Tetrahedral AlH4 and BH4 complexes are found to be distorted with the decrease of negative charge. One H-H distance becomes smaller and the charge density will overlap between them at a small anion charge. The activation energies to release of H2 from AlH4 and BH4 complexes are thus greatly decreased. We demonstrate that point defects such as neutral Na vacancies or substitution of a Na atom with Ti on the NaAlH4(001) surface can potentially cause strong distortion of neighboring AlH4 complexes and even induce spontaneous dehydrogenation. Our results help to rationalize the conjecture that the suppression of charge transfer to AlH4 and BH4 anion as a consequence of surface defects should be very effective for improving the recycling performance of H2 in NaAlH4 and LiBH4. The understanding gained here will aid in the rational design and development of hydrogen storage materials based on these two systems.
Resumo:
Introduction: The accurate identification of tissue electron densities is of great importance for Monte Carlo (MC) dose calculations. When converting patient CT data into a voxelised format suitable for MC simulations, however, it is common to simplify the assignment of electron densities so that the complex tissues existing in the human body are categorized into a few basic types. This study examines the effects that the assignment of tissue types and the calculation of densities can have on the results of MC simulations, for the particular case of a Siemen’s Sensation 4 CT scanner located in a radiotherapy centre where QA measurements are routinely made using 11 tissue types (plus air). Methods: DOSXYZnrc phantoms are generated from CT data, using the CTCREATE user code, with the relationship between Hounsfield units (HU) and density determined via linear interpolation between a series of specified points on the ‘CT-density ramp’ (see Figure 1(a)). Tissue types are assigned according to HU ranges. Each voxel in the DOSXYZnrc phantom therefore has an electron density (electrons/cm3) defined by the product of the mass density (from the HU conversion) and the intrinsic electron density (electrons /gram) (from the material assignment), in that voxel. In this study, we consider the problems of density conversion and material identification separately: the CT-density ramp is simplified by decreasing the number of points which define it from 12 down to 8, 3 and 2; and the material-type-assignment is varied by defining the materials which comprise our test phantom (a Supertech head) as two tissues and bone, two plastics and bone, water only and (as an extreme case) lead only. The effect of these parameters on radiological thickness maps derived from simulated portal images is investigated. Results & Discussion: Increasing the degree of simplification of the CT-density ramp results in an increasing effect on the resulting radiological thickness calculated for the Supertech head phantom. For instance, defining the CT-density ramp using 8 points, instead of 12, results in a maximum radiological thickness change of 0.2 cm, whereas defining the CT-density ramp using only 2 points results in a maximum radiological thickness change of 11.2 cm. Changing the definition of the materials comprising the phantom between water and plastic and tissue results in millimetre-scale changes to the resulting radiological thickness. When the entire phantom is defined as lead, this alteration changes the calculated radiological thickness by a maximum of 9.7 cm. Evidently, the simplification of the CT-density ramp has a greater effect on the resulting radiological thickness map than does the alteration of the assignment of tissue types. Conclusions: It is possible to alter the definitions of the tissue types comprising the phantom (or patient) without substantially altering the results of simulated portal images. However, these images are very sensitive to the accurate identification of the HU-density relationship. When converting data from a patient’s CT into a MC simulation phantom, therefore, all possible care should be taken to accurately reproduce the conversion between HU and mass density, for the specific CT scanner used. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital (RBWH), Brisbane, Australia. The authors are grateful to the staff of the RBWH, especially Darren Cassidy, for assistance in obtaining the phantom CT data used in this study. The authors also wish to thank Cathy Hargrave, of QUT, for assistance in formatting the CT data, using the Pinnacle TPS. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.