263 resultados para Stretching modes
Resumo:
The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.
Resumo:
Raman spectroscopy complimented with infrared spectroscopy has been used to study the variation in molecular structure of two minerals of the apophyllite mineral group, namely apophyllite-(KF)KCa4Si8O20F.8H2O and apophyllite-(KOH) KCa4Si8O20(F,OH).8H2O. apophyllite-(KF) and apophyllite-(KOH) are different minerals only because of the difference in the percentage of fluorine to hydroxyl ions. The Raman spectra are dominated by a very intense sharp peak at 1059 cm -1. A band at around 846 cm -1 is assigned to the water librational mode. It is proposed that the difference between apophyllite-(KF) and apophyllite-(KOH) is the observation of two Raman bands in the OH stretching region at around 3563 and 3625 cm -1. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces.
Resumo:
Stromatolites consist primarily of trapped and bound ambient sediment and/or authigenic mineral precipitates, but discrimination of the two constituents is difficult where stromatolites have a fine texture. We used laser ablation-inductively coupled plasma-mass spectrometry to measure trace element (rare earth element – REE, Y and Th) concentrations in both stromatolites (domical and branched) and closely associated particulate carbonate sediment in interspaces (spaces between columns or branches) from bioherms within the Neoproterozoic Bitter Springs Formation, central Australia. Our high resolution sampling allows discrimination of shale-normalised REE patterns between carbonate in stromatolites and immediately adjacent, fine-grained ambient particulate carbonate sediment from interspaces. Whereas all samples show similar negative La and Ce anomalies, positive Gd anomalies and chondritic Y/Ho ratios, the stromatolites and non-stromatolite sediment are distinguishable on the basis of consistently elevated light REEs (LREEs) in the stromatolitic laminae and relatively depleted LREEs in the particulate sediment samples. Additionally, concentrations of the lithophile element Th are higher in ambient sediment samples than in stromatolites, consistent with accumulation of some fine siliciclastic detrital material in the ambient sediment but a near absence in the stromatolites. These findings are consistent with the stromatolites consisting dominantly of in situ carbonate precipitates rather than trapped and bound ambient sediment. Hence, high resolution trace element (REE + Y, Th) geochemistry can discriminate fine-grained carbonates in these stromatolites from coeval non-stromatolitic carbonate sediment and demonstrates that the sampled stromatolites formed primarily from in situ precipitation, presumably within microbial mats/biofilms, rather than by trapping and binding of ambient sediment. Identification of the source of fine carbonate in stromatolites is significant, because if it is not too heavily contaminated by trapped ambient sediment, it may contain geochemical biosignatures and/or direct evidence of the local water chemistry in which the precipitates formed.
Resumo:
This chapter represents the analytical solution of two-dimensional linear stretching sheet problem involving a non-Newtonian liquid and suction by (a) invoking the boundary layer approximation and (b) using this result to solve the stretching sheet problem without using boundary layer approximation. The basic boundary layer equations for momentum, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The results reveal a new analytical procedure for solving the boundary layer equations arising in a linear stretching sheet problem involving a non-Newtonian liquid (Walters’ liquid B). The present study throws light on the analytical solution of a class of boundary layer equations arising in the stretching sheet problem.
Resumo:
The structure of the borate mineral sakhaite Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O, a borate–carbonate of calcium and magnesium has been assessed using vibrational spectroscopy. Assignment of bands is undertaken by comparison with the data from other published results. Intense Raman band at 1134 cm−1 with a shoulder at 1123 cm−1 is assigned to the symmetric stretching mode. The Raman spectrum displays bands at 1479, 1524 and 1560 cm−1 which are assigned to the antisymmetric stretching vibrations. The observation of multiple carbonate stretching bands supports the concept that the carbonate units are non-equivalent. The Raman band at 968 cm−1 with a shoulder at 950 cm−1 is assigned to the symmetric stretching mode of trigonal boron. Raman bands at 627 and 651 cm−1 are assigned to the out-of-plane bending modes of trigonal and tetrahedral boron. Raman spectroscopy coupled with infrared spectroscopy enables the molecular structure of the mineral sakhaite to be assessed.
Resumo:
Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl and occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic – pyramidal crystal system. An intense Raman band at 1009 cm−1 was assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1121, 1136, 1143 cm−1 are attributed to the in-plane bending vibrations of trigonal boron. Four sharp Raman bands observed at 415, 494, 621 and 671 cm−1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3405 and 3494 cm−1, thus indicating that some Cl anions have been replaced with OH units. The molecular structure of a natural boracite has been assessed by using vibrational spectroscopy.
Resumo:
In this research, we have used vibrational spectroscopy to study the phosphate mineral kosnarite KZr2(PO4)3. Interest in this mineral rests with the ability of zirconium phosphates (ZP) to lock in radioactive elements. ZP have the capacity to concentrate and immobilize the actinide fraction of radioactive phases in homogeneous zirconium phosphate phases. The Raman spectrum of kosnarite is characterized by a very intense band at 1,026 cm−1 assigned to the symmetric stretching vibration of the PO4 3− ν1 symmetric stretching vibration. The series of bands at 561, 595 and 638 cm−1 are assigned to the ν4 out-of-plane bending modes of the PO4 3− units. The intense band at 437 cm−1 with other bands of lower wavenumber at 387, 405 and 421 cm−1 is assigned to the ν2 in-plane bending modes of the PO4 3− units. The number of bands in the antisymmetric stretching region supports the concept that the symmetry of the phosphate anion in the kosnarite structure is preserved. The width of the infrared spectral profile and its complexity in contrast to the well-resolved Raman spectrum show that the pegmatitic phosphates are better studied with Raman spectroscopy.
Resumo:
The objective of this work is to analyze ludlamite (Fe,Mn,Mg)3(PO4)2⋅4H2O from Boa Vista mine, Galiléia, Brazil and to assess the molecular structure of the mineral. The phosphate mineral ludlamite has been characterized by EMP-WDS, Raman and infrared spectroscopic measurements. The mineral is shown to be a ferrous phosphate with some minor substitution of Mg and Mn. Raman bands at 917 and 950 cm−1 are assigned to the symmetric stretching mode of and units. Raman bands at 548, 564, 599 and 634 cm−1 are assigned to the ν4 bending modes. Raman bands at 2605, 2730, 2896 and 3190 cm−1 and infrared bands at 2623, 2838, 3136 and 3185 cm−1 are attributed to water stretching vibrations. By using a Libowitzky empirical function, hydrogen bond distances are calculated from the OH stretching wavenumbers. Strong hydrogen bonds in the structure of ludlamite are observed as determined by their hydrogen bond distances. The application of infrared and Raman spectroscopy to the study of ludlamite enables the molecular structure of the pegmatite mineral ludlamite to be assessed.
Resumo:
Zanazziite is the magnesium member of a complex beryllium calcium phosphate mineral group named roscherite. The studied samples were collected from the Ponte do Piauí mine, located in Itinga, Minas Gerais. The mineral was studied by electron microprobe, Raman and infrared spectroscopy. The chemical formula can be expressed as Ca2.00(Mg3.15,Fe0.78,Mn0.16,Zn0.01,Al0.26,Ca0.14)Be4.00(PO4)6.09(OH)4.00⋅5.69(H2O) and shows an intermediate member of the zanazziite–greinfeinstenite series, with predominance of zanazziite member. The molecular structure of the mineral zanazziite has been determined using a combination of Raman and infrared spectroscopy. A very intense Raman band at 970 cm−1 is assigned to the phosphate symmetric stretching mode whilst the Raman bands at 1007, 1047, 1064 and 1096 cm−1 are attributed to the phosphate antisymmetric stretching mode. The infrared spectrum is broad and the antisymmetric stretching bands are prominent. Raman bands at 559, 568, 589 cm−1 are assigned to the ν4 out of plane bending modes of the PO4 and HPO4 units. The observation of multiple bands supports the concept that the symmetry of the phosphate unit in the zanazziite structure is reduced in symmetry. Raman bands at 3437 and 3447 cm−1 are attributed to the OH stretching vibrations; Raman bands at 3098 and 3256 are attributed to water stretching vibrations. The width and complexity of the infrared spectral profile in contrast to the well resolved Raman spectra, proves that the pegmatitic phosphates are better studied with Raman spectroscopy.
Resumo:
Monetite is a phosphate mineral formed by the reaction of the chemicals in bat guano with calcite substrates and is commonly found in caves. The analog of the mineral monetite CaHPO4 has been synthesized and the Raman and infrared spectra of the natural monetite originating from the Murra-el-elevyn Cave, Eucla, Western Australia, compared. Monetite is characterized by a complex set of phosphate bands that arise because of two sets of pairs of phosphate units in the unit cell. Raman and infrared bands are assigned to HPO4(2-), OH stretching and bending vibrations. Infrared bands at 1346 and 1402 cm−1 are assigned to POH deformation modes. Vibrational spectroscopy confirms the presence of monetite in the cave system.
Resumo:
The secondary phosphate mineral sigloite Fe3+Al2(PO4)2(OH)3·7H2O is the exception to the rule that phosphate mineral paragenesis is related to the final phase of hydrothermal mineralization at low temperatures. Sigloite was formed as an oxidation pseudomorph after paravauxite, during the last supergene paragenetic stage. We have studied the secondary phosphate mineral sigloite Fe3+Al2(PO4)2(OH)3·7H2O using vibrational spectroscopic techniques. Because the mineral is a phosphate mineral, it is readily studied by spectroscopic techniques as the phosphate and hydrogen phosphate units are readily measured. Indeed, sigloite shows the presence of both phosphate and hydrogen phosphate units in its structure. Raman bands at 1009 cm−1 with shoulders at 993 and 1039 cm−1 are assigned to stretching vibrations of and units. The Raman band at 993 cm−1 is assigned to the ν1 symmetric stretching mode of the POH units, whereas the Raman band at 1009 cm−1 is assigned to the ν1 symmetric stretching mode. Raman bands observed at 506, 528, 571, 596, 619 and 659 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The Raman bands at 2988, 3118 and 3357 cm−1 are assigned to water stretching vibration. The series of bands at 3422, 3449, 3493, 3552 and 3615 cm−1 are assigned to the OH stretching vibrations of the hydroxyl units. The observation of multiple bands gives credence to the non-equivalence of the OH units in the sigloite structure.
Resumo:
The mineral tooeleite Fe6(AsO3)4SO4(OH)4�4H2O is secondary ferric arsenite sulphate mineral which has environmental significance for arsenic remediation because of its high stability in the regolith. The mineral has been studied by X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy. The XRD result indicates tooeleite can form more crystalline solids in an acid environment than in an alkaline environment. Infrared spectroscopy identifies moderately intense band at 773 cm�1 assigned to AsO3� 3 symmetric stretching vibration. Raman spectroscopy identifies three bands at 803, 758 and 661 cm�1 assigned to the symmetric and antisymmetric stretching vibrations of AsO3� 3 and As-OH stretching vibration respectively. In addition, the infrared bands observed at 1116, 1040, 1090, 981 and 616 cm�1, are assigned to the m3, m1 and m4 modes of SO2� 4 . The same bands are observed at 1287, 1085, 983 and 604 cm�1 in the Raman spectrum. As3d band at binding energy of 44.05 eV in XPS confirms arsenic valence of tooeleite is +3. These characteristic bands in the IR and Raman spectra provide useful basis for identifying the mineral tooeleite.
Resumo:
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.