215 resultados para Strain Intensity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Idiomarina sp. strain 28-8 is an aerobic, Gram-negative, flagellar bacterium isolated from the bodies of ark shells (Scapharca broughtonii) collected from underwater sediments in Gangjin Bay, South Korea. Here, we present the draft genome sequence of Idiomarina sp. 28-8 (2,971,606 bp, with a G+C content of 46.9%), containing 2,795 putative coding sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genesmarkers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism’s intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. Methods SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. Results The strain harboring the SNV with the most marked impact on proteolysis (cthtrAP370L) was detected to have a significant reduction in the production of infectious elementary bodies. Conclusions This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract PURPOSE: Compensatory responses may attenuate the effectiveness of exercise training in weight management. The aim of this study was to compare the effect of moderate- and high-intensity interval training on eating behavior compensation. METHODS: Using a crossover design, 10 overweight and obese men participated in 4-week moderate (MIIT) and high (HIIT) intensity interval training. MIIT consisted of 5-min cycling stages at ± 20% of mechanical work at 45%VO(2)peak, and HIIT consisted of alternate 30-s work at 90%VO(2)peak and 30-s rests, for 30 to 45 min. Assessments included a constant-load exercise test at 45%VO(2)peak for 45 min followed by 60-min recovery. Appetite sensations were measured during the exercise test using a Visual Analog Scale. Food preferences (liking and wanting) were assessed using a computer-based paradigm, and this paradigm uses 20 photographic food stimuli varying along two dimensions, fat (high or low) and taste (sweet or nonsweet). An ad libitum test meal was provided after the constant-load exercise test. RESULTS: Exercise-induced hunger and desire to eat decreased after HIIT, and the difference between MIIT and HIIT in desire to eat approached significance (p = .07). Exercise-induced liking for high-fat nonsweet food tended to increase after MIIT and decreased after HIIT (p = .09). Fat intake decreased by 16% after HIIT, and increased by 38% after MIIT, with the difference between MIIT and HIIT approaching significance (p = .07). CONCLUSIONS: This study provides evidence that energy intake compensation differs between MIIT and HIIT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for materials that are well suited for cartilage tissue engineering. Hydrogels have emerged as promising biomaterials for cartilage repair, since, like cartilage, they have high water content, and they allow cells to be encapsulated within the material in a genuinely three-dimensional microenvironment. In this study, we investigated the mechanical properties of tissue-engineered cartilage constructs using in vitro culture models incorporating human chondrocytes from osteoarthritis patients. We evaluated hydrogels formed from mixtures of photocrosslinkable gelatin-methacrylamide (Gel-MA) and varying concentrations (0–2%) of hyaluronic acid methacrylate (HA-MA). Initially, only small differences in the stiffness of each hydrogel existed. After 4 weeks of culture, and to a greater extent 8 weeks of culture, HA-MA had striking and concentration dependent impact on the changes in mechanical properties. For example, the initial compressive moduli of cell-laden constructs with 0 and 1% HA-MA were 29 and 41 kPa, respectively. After 8 weeks of culture, the moduli of these constructs had increased to 66 and 147 kPa respectively, representing a net improvement of 69 kPa for gels with 1% HA-MA. Similarly the equilibrium modulus, dynamic modulus, failure strength and failure strain were all improved in constructs containing HA-MA. Differences in mechanical properties did not correlate with glycosaminoglycan content, which did not vary greatly between groups, yet there were clear differences in aggrecan intensity and distribution as assessed using immunostaining. Based on the functional development with time in culture using human chondrocytes, mixtures of Gel-MA and HA-MA are promising candidates for cartilage tissue-engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In 2011, a variant of West Nile virus Kunjin strain (WNVKUN) caused an unprecedented epidemic of neurological disease in horses in southeast Australia, resulting in almost 1,000 cases and a 9% fatality rate. We investigated whether increased fitness of the virus in the primary vector, Culex annulirostris, and another potential vector, Culex australicus, contributed to the widespread nature of the outbreak. Methods Mosquitoes were exposed to infectious blood meals containing either the virus strain responsible for the outbreak, designated WNVKUN2011, or WNVKUN2009, a strain of low virulence that is typical of historical strains of this virus. WNVKUN infection in mosquito samples was detected using a fixed cell culture enzyme immunoassay and a WNVKUN- specific monoclonal antibody. Probit analysis was used to determine mosquito susceptibility to infection. Infection, dissemination and transmission rates for selected days post-exposure were compared using Fisher’s exact test. Virus titers in bodies and saliva expectorates were compared using t-tests. Results There were few significant differences between the two virus strains in the susceptibility of Cx. annulirostris to infection, the kinetics of virus replication and the ability of this mosquito species to transmit either strain. Both strains were transmitted by Cx. annulirostris for the first time on day 5 post-exposure. The highest transmission rates (proportion of mosquitoes with virus detected in saliva) observed were 68% for WNVKUN2011 on day 12 and 72% for WNVKUN2009 on day 14. On days 12 and 14 post-exposure, significantly more WNVKUN2011 than WNVKUN2009 was expectorated by infected mosquitoes. Infection, dissemination and transmission rates of the two strains were not significantly different in Culex australicus. However, transmission rates and the amount of virus expectorated were significantly lower in Cx. australicus than Cx. annulirostris. Conclusions The higher amount of WNVKUN2011 expectorated by infected mosquitoes may be an indication that this virus strain is transmitted more efficiently by Cx. annulirostris compared to other WNVKUN strains. Combined with other factors, such as a convergence of abundant mosquito and wading bird populations, and mammalian and avian feeding behaviour by Cx. annulirostris, this may have contributed to the scale of the 2011 equine epidemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction β-alanine (BAl) and NaHCO3 (SB) ingestion may provide performance benefits by enhancing concentrations of their respective physiochemical buffer counterparts, muscle carnosine and blood bicarbonate, counteracting acidosis during intense exercise. This study examined the effect of BAl and SB co-supplementation as an ergogenic strategy during high-intensity exercise. Methods Eight healthy males ingested either BAl (4.8 g day−1 for 4 weeks, increased to 6.4 g day−1 for 2 weeks) or placebo (Pl) (CaCO3) for 6 weeks, in a crossover design (6-week washout between supplements). After each chronic supplementation period participants performed two trials, each consisting of two intense exercise tests performed over consecutive days. Trials were separated by 1 week and consisted of a repeated sprint ability (RSA) test and cycling capacity test at 110 % Wmax (CCT110 %). Placebo (Pl) or SB (300 mg kgbw−1) was ingested prior to exercise in a crossover design to creating four supplement conditions (BAl-Pl, BAl-SB, Pl–Pl, Pl-SB). Results Carnosine increased in the gastrocnemius (n = 5) (p = 0.03) and soleus (n = 5) (p = 0.02) following BAl supplementation, and Pl-SB and BAl-SB ingestion elevated blood HCO3 − concentrations (p < 0.01). Although buffering capacity was elevated following both BAl and SB ingestion, performance improvement was only observed with BAl-Pl and BAl-SB increasing time to exhaustion of the CCT110 % test 14 and 16 %, respectively, compared to Pl–Pl (p < 0.01). Conclusion Supplementation of BAl and SB elevated buffering potential by increasing muscle carnosine and blood bicarbonate levels, respectively. BAl ingestion improved performance during the CCT110 %, with no aggregating effect of SB supplementation (p > 0.05). Performance was not different between treatments during the RSA test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared fat oxidation rate from a graded exercise test (GXT) with a moderate-intensity interval training session (MIIT) in obese men. Twelve sedentary obese males (age 29 ± 4.1 years; BMI 29.1 ± 2.4 kg·m-2; fat mass 31.7 ± 4.4 %body mass) completed two exercise sessions: GXT to determine maximal fat oxidation (MFO) and maximal aerobic power (VO2max), and an interval cycling session during which respiratory gases were measured. The 30-min MIIT involved 5-min repetitions of workloads 20% below and 20% above the MFO intensity. VO2max was 31.8 ± 5.5 ml·kg-1·min-1 and all participants achieved ≥ 3 of the designated VO2max test criteria. The MFO identified during the GXT was not significantly different compared with the average fat oxidation rate in the MIIT session. During the MIIT session, fat oxidation rate increased with time; the highest rate (0.18 ± 0.11 g·min- 1) in minute 25 was significantly higher than the rate at minute 5 and 15 (p ≤ 0.01 and 0.05 respectively). In this cohort with low aerobic fitness, fat oxidation during the MIIT session was comparable with the MFO determined during a GXT. Future research may consider if the varying workload in moderate-intensity interval training helps adherence to exercise without compromising fat oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid–interstitial fluid interaction, which depends on tissue permeability, is significant to the strain-rate-dependent mechanical behavior of humeral head (shoulder) cartilage. Due to anatomical and biomechanical similarities to that of the human shoulder, kangaroos present a suitable animal model. Therefore, indentation experiments were conducted on kangaroo shoulder cartilage tissues from low (10−4/s) to moderately high (10−2/s) strain-rates. A porohyperelastic model was developed based on the experimental characterization; and a permeability function that takes into account the effect of strain-rate on permeability (strain-rate-dependent permeability) was introduced into the model to investigate the effect of rate-dependent fluid flow on tissue response. The prediction of the model with the strain-rate-dependent permeability was compared with those of the models using constant permeability and strain-dependent permeability. Compared to the model with constant permeability, the models with strain-dependent and strain-rate-dependent permeability were able to better capture the experimental variation at all strain-rates (p<0.05). Significant differences were not identified between models with strain-dependent and strain-rate-dependent permeability at strain-rate of 5×10−3/s (p=0.179). However, at strain-rate of 10−2/s, the model with strain-rate-dependent permeability was significantly better at capturing the experimental results (p<0.005). The findings thus revealed the significance of rate-dependent fluid flow on tissue behavior at large strain-rates, which provides insights into the mechanical deformation mechanisms of cartilage tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a ubiquitous intracellular pathogen, first associated with human respiratory disease and subsequently detected in a range of mammals, amphibians, and reptiles. Here we report the draft genome sequence for strain B21 of C. pneumoniae, isolated from the endangered Australian marsupial the western barred bandicoot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research Review on: Mueller X, Tinguely F, Tevaearai H, Revelly J, Chiolero R & Von Segess L. Pain location, distribution and intensity after cardiac surgery. Chest 2000; 118(2):391.396.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Different from other indicators of cardiac function, such as ejection fraction and transmitral early diastolic velocity, myocardial strain is promising to capture subtle alterations that result from early diseases of the myocardium. In order to extract the left ventricle (LV) myocardial strain and strain rate from cardiac cine-MRI, a modified hierarchical transformation model was proposed. Methods A hierarchical transformation model including the global and local LV deformations was employed to analyze the strain and strain rate of the left ventricle by cine-MRI image registration. The endocardial and epicardial contour information was introduced to enhance the registration accuracy by combining the original hierarchical algorithm with an Iterative Closest Points using Invariant Features algorithm. The hierarchical model was validated by a normal volunteer first and then applied to two clinical cases (i.e., the normal volunteer and a diabetic patient) to evaluate their respective function. Results Based on the two clinical cases, by comparing the displacement fields of two selected landmarks in the normal volunteer, the proposed method showed a better performance than the original or unmodified model. Meanwhile, the comparison of the radial strain between the volunteer and patient demonstrated their apparent functional difference. Conclusions The present method could be used to estimate the LV myocardial strain and strain rate during a cardiac cycle and thus to quantify the analysis of the LV motion function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Inflammation and biomechanical factors have been associated with the development of vulnerable atherosclerotic plaques. Lipid-lowering therapy has been shown to be effective in stabilizing them by reducing plaque inflammation. Its effect on arterial wall strain, however, remains unknown. The aim of the present study was to investigate the role of high- and low-dose lipid-lowering therapy using an HMG-CoA reductase inhibitor, atorvastatin, on arterial wall strain. Methods and Results: Forty patients with carotid stenosis >40% were successfully followed up during the Atorvastatin Therapy: Effects on Reduction Of Macrophage Activity (ATHEROMA; ISRCTN64894118) Trial. All patients had plaque inflammation as shown by intraplaque accumulation of ultrasmall super paramagnetic particles of iron oxide on magnetic resonance imaging at baseline. Structural analysis was performed and change of strain was compared between high- and low-dose statin at 0 and 12 weeks. There was no significant difference in strain between the 2 groups at baseline (P=0.6). At 12 weeks, the maximum strain was significantly lower in the 80-mg group than in the 10-mg group (0.085±0.033 vs. 0.169±0.084; P=0.001). A significant reduction (26%) of maximum strain was observed in the 80-mg group at 12 weeks (0.018±0.02; P=0.01). Conclusions: Aggressive lipid-lowering therapy is associated with a significant reduction in arterial wall strain. The reduction in biomechanical strain may be associated with reductions in plaque inflammatory burden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new approach for velocity vector imaging and time-resolved measurements of strain rates in the wall of human arteries using MRI and we prove its feasibility on two examples: in vitro on a phantom and in vivo on the carotid artery of a human subject. Results point out the promising potential of this approach for investigating the mechanics of arterial tissues in vivo.