238 resultados para Strain Field Evolution
Resumo:
Background Chlamydia pneumoniae is a widespread pathogen causing upper and lower respiratory tract infections in addition to a range of other diseases in humans and animals. Previous whole genome analyses have focused on four essentially clonal (> 99% identity) C. pneumoniae human genomes (AR39, CWL029, J138 and TW183), providing relatively little insight into strain diversity and evolution of this species. Results We performed individual gene-by-gene comparisons of the recently sequenced C. pneumoniae koala genome and four C. pneumoniae human genomes to identify species-specific genes, and more importantly, to gain an insight into the genetic diversity and evolution of the species. We selected genes dispersed throughout the chromosome, representing genes that were specific to C. pneumoniae, genes with a demonstrated role in chlamydial biology and/or pathogenicity (n = 49), genes encoding nucleotide salvage or amino acid biosynthesis proteins (n = 6), and extrachromosomal elements (9 plasmid and 2 bacteriophage genes). Conclusions We have identified strain-specific differences and targets for detection of C. pneumoniae isolates from both human and animal origin. Such characterisation is necessary for an improved understanding of disease transmission and intervention.
Resumo:
Standardised testing does not recognise the creativity and skills of marginalised youth. This paper presents the development of an innovative approach to assessment designed for the re-engagement of at risk youth who have left formal schooling and are now in an alternative education institution. An electronic portfolio system (EPS) has been developed to capture, record and build on the broad range of students’ cultural and social capital. The assessment as a field of exchange model draws on categories from sociological fields of capital and reconceptualises an eportfolio and social networking hybrid system as a sociocultural zone of learning and development. The EPS, and assessment for learning more generally, are conceptualised as social fields for the exchange of capital (Bourdieu 1977, 1990). The research is underpinned by a sociocultural theoretical perspective that focuses on how students and teachers at the Flexible Learning Centre (FLC) develop and learn, within the zone of proximal development (Vygotsky, 1978). The EPS is seen to be highly effective in the engagement and social interaction between students, teachers and institutions. It is argued throughout this paper that the EPS provides a structurally identifiable space, an arena of social activity, or a field of exchange. The students, teachers and the FLC within this field are producing cultural capital exchanges. The term efield (exchange field) has been coined to refer to this constructed abstract space. Initial results from the trial show a general tendency towards engagement with the EPS and potential for the attainment of socially valued cultural capital in the form of school credentials.
Resumo:
An improved mesoscopic model is presented for simulating the drying of porous media. The aim of this model is to account for two scales simultaneously: the scale of the whole product and the scale of the heterogeneities of the porous medium. The innovation of this method is the utilization of a new mass-conservative scheme based on the Control-Volume Finite-Element (CV-FE) method that partitions the moisture content field over the individual sub-control volumes surrounding each node within the mesh. Although the new formulation has potential for application across a wide range of transport processes in heterogeneous porous media, the focus here is on applying the model to the drying of small sections of softwood consisting of several growth rings. The results conclude that, when compared to a previously published scheme, only the new mass-conservative formulation correctly captures the true moisture content evolution in the earlywood and latewood components of the growth rings during drying.
Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensing
Resumo:
In this paper, the effect of electric field enhancement on Pt/nanostructured ZnO Schottky diode based hydrogen sensors under reverse bias condition has been investigated. Current-voltage characteristics of these diodes have been studied at temperatures from 25 to 620 °C and their free carrier density concentration was estimated by exposing the sensors to hydrogen gas. The experimental results show a significantly lower breakdown voltage in reversed bias current-voltage characteristics than the conventional Schottky diodes and also greater lateral voltage shift in reverse bias operation than the forward bias. This can be ascribed to the increased localized electric fields emanating from the sharp edges and corners of the nanostructured morphologies. At 620 °C, voltage shifts of 114 and 325 mV for 0.06% and 1% hydrogen have been recorded from dynamic response under the reverse bias condition. © 2010 Elsevier B.V. All rights reserved.